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ABSTRACT 

 
AN ENERGY ANALYSIS AND CHARACTERIZATION OF SAFOU  

(DACRYODES EDULIS) AS BIOFUEL FEEDSTOCK 
(December 2010) 

 
 

Daniel Allen Law, BFA, Asbury College  

M.S., Appalachian State University 

Thesis Chairperson: Marie Hoepfl  

 

 Safou (Dacryodes edulis) is a fruit indigenous to West Africa with considerable 

potential as an oil crop.  The current market for Safou fruit experiences as much as 40-50% 

post-harvest losses en route to market.  The need for a strategy to recover value lost due to 

fruit spoilage and Safou’s potential as a biodiesel feedstock have been combined in this 

work.  In ideal terms, oil extracted from the spoiled crop could offset fuel production costs or 

even produce the fuel to transport the crop to market, thereby increasing food security in 

areas of West and Central Africa where Safou is prolific.  In this work, the embodied energy 

of Safou pulp, seed, press-cake, and the oil generated from pressing pulp was quantified.  

Energy required for processing was also quantified, and preparing and pressing spoiled pulp 

were investigated in terms of both oil yield and character of the oil.  Both fresh and spoiled 

pulp oil were investigated in terms of fuel characteristics and found to be similar.  Fuel was 
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produced from the pulp oil and compared to conventional petro-diesel and soy biodiesel in 

terms of emissions when combusted in a 2006 Jetta TDI.   

According to the findings of this research, Safou has potential as a biofuel feedstock. 

Although the energy balance assessment conducted did not represent a comprehensive life 

cycle analysis, the potential energy balance of Safou as biodiesel feedstock was found to be 

favorable.  The prospect of reclaiming post-harvest losses by extracting oil from spoiled fruit 

pulp was found to be possible.  Emissions generated by Safou were not uniquely better or 

worse than those of petro diesel or biodiesel, despite some variation in emissions 

performance under different conditions.  Although the Safou industry is in its infancy, the 

potential to develop it further without compromising its continued use as a food source 

appears feasible, since spoiled fruit was shown to be a feasible source of oil for biodiesel 

production.  
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CHAPTER 1 

INTRODUCTION 

 

 The global trend toward increased use of renewable energies has led to the 

investigation of non-traditional oil producing crops.  Some crops have been discovered in the 

tropical sub-Saharan regions of Africa that have potential for use as biofuel feedstocks.  One 

promising example is the fruit of the Dacryodes edulis tree. This tree is found in Western 

Africa and its fruit, commonly known as Safou, has primarily been cultivated as a food 

source, but the tree is also a source of shade, wood, and traditional medicines (National 

Research Council, 2008). 

 Safou was selected for research and domestication by the World Agroforestry Center 

(ICRAF) in the early 1990s (Franzel, Jaenicke, & Janssen, 1996; Jaenicke, Franzel, & 

Boland, 1995).  Since that time research has been initiated to characterize the fruit’s 

chemical, nutritional, and market potential as well as the tree’s agroforestry potential.  An 

expanding Safou market has encouraged these efforts (Awono, Ndoye, Schreckenber, 

Tabuna, & Isseri, 2002), and the fruit’s oil content, in particular, has drawn significant 

attention. The fruit crop from Dacryodes edulis is estimated to yield more oil than 

commercialized oil crops like coconut and oil palm (El Bassam, 1998).  

 Many of the obstacles for growing and marketing Safou have been identified, but not 

all have been satisfactorily addressed.  The variability of trees and their fruit has confounded 

farmers and consumers alike.  Furthermore, food crop losses en route to markets have been 

estimated as high as 50% due to harvest, post-harvest handling, and the fruit’s inherently 

short shelf life in tropical climates (Silou, Massamb, Maniongui, Maloumbi, & Biyoko, 
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2006).  Although the fruit has not been easy to commercialize, the market demand continues 

to grow.   Safou’s lipid content and possible annual production rate have garnered 

serious consideration by members of the food, cosmetics, and fuel industries (Arisa & 

Aworh, 2008).  The fruit’s food potential has been extensively investigated and the oil’s lipid 

characteristics have identified it as a potential raw material for cosmetics. Regarding its use 

as a fuel, however, little has been done to seriously analyze the energy content of the fruit or 

to characterize the oil’s potential if converted into biodiesel. 

 

Statement of the Problem 

 Though primarily a food crop, Safou’s potential to be one of the highest oil-producing 

fruit crops begs the question of its potential as a biofuel crop.   Because Safou has a large 

post-harvest loss rate (40-50%), there is potential to recuperate that loss by processing an 

otherwise spoiled food product into two marketable products, oil and press cake.  Though 

these products may not be favorable for human consumption oil may still be used for 

cosmetics and fuel while the meal could be used for animal feed.  In ideal terms, fuel 

generated by the otherwise lost crop could offset or even produce the fuel to transport the 

crop to market, thereby increasing food security in areas of West and Central Africa where 

Safou is prolific. While there is potential for recuperating post harvest losses through oil 

extraction and fuel production, such a path is contingent on basic issues of biofuel viability 

regarding energy balance and fuel characteristics.  
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Purpose of the Research 

The purpose of this research is to investigate the viability of Safou as a biodiesel feedstock in 

terms of its energy content and fuel characteristics.  A favorable energy balance, where the 

energy contained in a fuel is greater or at least equal to the energy needed for production, is 

key to viability. The fuel’s pre-combustion and combustion characteristics such as cloud 

point, gel/pour point, lubricity, viscosity, and flashpoint help to define the fuel and its 

regional viability while the post-combustion emissions place the fuel in context of green 

house gas (GHG) emissions compared to other fuels. 

 

The Scope of the Research 

The scope of this work involved six main tasks. The first task was to quantify the energy 

densities of the raw oil and of the residual biomass generated during oil production; this 

included the press meal and seeds. The second task was to produce a Safou biodiesel that 

could pass general ASTM certification.  The third task was to quantify the energy density of 

the oil once converted to Fatty Acid Methyl Ester (FAME) biodiesel.  The fourth task was to 

generate a preliminary physical and chemical characterization of the Safou biodiesel and to 

confirm general adherence to ASTM certification prior to combustion. The fifth task was to 

generate three distinct emissions data sets from the combustion of Safou bio-diesel, standard 

petro-diesel, and soy biodiesel.  The sixth task was to then compare the post-combustion 

emissions generated from each fuel in terms of CO, CO2, NO, NO2, and total hydro-carbons 

(THC).  
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Limitations of the Study 

Safou Fruit Sample 

Fruit origin and morphology.  There is a large variety of Safou fruits in western 

Africa.  Unlike other fruits, such as apples, where there are specific cultivars with names and 

consistent fruit morphology, the nomenclature for Safou varieties is not well developed.  In 

the absence of cultivar identification for this research the fruit has been identified by 

geographical origin and fruit morphology. The samples collected for this study were from the 

area around the town of Kimpese in the Bas-Congo region of the Democratic Republic of 

Congo (DRC). The fruit available there can generally be categorized into three groups based 

on size.  The largest were on average 8 cm long and 3.5 cm in diameter, the medium-size 

fruits were 5.5 cm by 3.2 cm in diameter, and the smallest fruits were 3.75 cm long and 3 cm 

in diameter.  

Sample validity.  Ideally, a significant sample size of a single fruit type within a 

uniform stage of ripeness would have been available for the study; however, fruit availability 

was limited.  The three fruit sizes and the stages of ripeness were indicative of what kind of 

Safou is grown in the area and is typically harvested for market.  That said, it cannot be 

assumed that the fruit collected in this sample was representative of all Safou fruit that goes 

to market.   

Fruit ripeness.  Due to a delayed fruiting season attributed to diminished rains during 

the months preceding January 2010, when this sample was collected, a sufficient quantity of 

uniformly and ideally ripe fruit was not available.  The only criterion for inclusion in the 

sample was edibility based on ripeness.  Included fruit was near-ripe and ripe, but no over-

ripe fruit was available.  It has been suggested that the longer a fruit is left on the tree the 
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greater the oil content. It was not possible to confirm this claim or to quantify the oil 

production potential for fruit that has spoiled on the tree.  

Fruit oil yield.  The amount of oil contained in the Safou fruit is dependent on the 

variety, the growing conditions, and the fruit’s stage of maturation.  As a rule there is a 

greater percentage of oil in the pulp the longer the fruit remains attached to the tree.  Due to 

the lack of overripe fruit for this sample, estimates of the fruit’s potential maximum oil yield 

were not directly attainable.  However, in light of what kind of fruit is moved to market the 

sample collected is a reasonable representation, because more than 60% were directly 

purchased from producers moving fruit to market or from local markets.  The remaining fruit 

was harvested expressly for this study.  Of these fruit, more than half were ripe and the rest 

near-ripe. This means that about 80% of the fruit was market ripe.   

 

Fruit Harvesting Data  

Data collected for harvesting represented a very small sample and were limited to six 

trees of varying sizes.  A Safou tree can grow to be more than 25 meters tall, making it 

difficult and dangerous to collect fruit.  Two of the trees from which fruit was collected were 

very accessible, while the other four were less so.  The harvesting data, though not extensive 

or general, can provide some foundation as to the time required for harvesting by hand and to 

potential tree crop development.  

 

Process and Preparation of Oil and Fruit Pulp for Export 

Oil processing.  A quantity of oil was extracted in the DRC by drying the fruit and 

pressing out the oil using a manual press. This raw oil was placed in canning jars with loose 
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lids, which were then placed in a bath of boiling water for 10 minutes.  The lids on the jars 

where then tightened and allowed to cool and seal.  

Fruit pulp processing.  Three methods were employed to prepare fruit pulp for 

export. The first method included removing the firm pulp from the seed center, chopping the 

pulp, and drying it in electric forced-air dehumidifiers.  The dehumidifiers operated between 

135° F and 155° F for 7-9 hours. The second method also included removing and chopping 

the pulp, but these samples were spread on baking trays and placed in electric ovens at ~250° 

F until they sounded brittle and were no longer soft when pinched.  The third method 

included placing fresh and rotting pulp in canning jars and pressure canning at 15 psi, which 

is equivalent to 250° F. The varying methods of preparation have differing effects on the 

pulp at a cellular level, but are expected to have less effect on the character of the oil.  It is 

not a primary goal of this research to compare these three treatment methods.  Furthermore, 

these methods of pre-treatment for oil extraction are not indicative of a preexisting process 

used in western Africa because oil extraction is not a common practice for this fruit.  Ideally, 

the most common and energy efficient method would have been, used but this has not been 

determined as of yet.   

 

Energy Analysis and Considerations  

Energy is a focus of this research only in terms of the energy embodied in the oil, the 

press-cake, the seeds, and the biodiesel. Energy life cycle for the process and production of 

fuel is not a primary focus of this research.  That said, some preliminary data for energy 

inputs was collected and was considered for harvesting, preparing, drying, and pressing the 



7 
 

fruit, but these data are preliminary and only provide some context for future consideration of 

energy inputs in relation to the embodied energy of the fuel.  

 

Fuel Characterization 

 The pre-combustion characterization for the oil and fuel did not include the complete 

battery of tests required for American Society of Testing and Materials (ASTM) certification. 

However, partial ASTM characterization was possible at Appalachian State University 

(ASU) using gas chromatography/ mass spectrometry (GC/MC) and hydrogen nuclear mass 

resonance (HNMR).  Also, lubricity was tested following ASTM protocol with a high 

frequency reciprocating rig (HFRR).  Physical fuel characteristics, including cloud point and 

gel point, were investigated using practical bench top tests but did not strictly follow ASTM 

protocol.  Further ASTM tests were performed at Pittsboro Community College by Jeremy 

Ferrell, a Research Analyst for Appalachian State University’s Energy Center. These tests 

followed ASTM certified testing protocol and are summarized in Table 4.7. 

 

Fuel Sample 

 The fuel sample used for the emissions data only included two gallons of polished 

fuel.  Although this was not a substantial quantity it was sufficient to identify obvious fuel 

characteristics and emissions.   

 

Engine Type 

The emissions data generated for this study were collected from the operation of a 

2006 VW Jetta TDI.  This vehicle is not representative of all diesel engines or vehicle types.  
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The Jetta engine has four in-line cylinders with a total volume of 1,896 cc.  The cylinders 

have a 79.5 mm bore diameter and a stroke length of 95.5 mm.  This generates a compression 

ratio of 18.5:1.  The engine has two overhead cams per cylinder. The fuel delivery system is 

a direct injection system. The engine also has a turbo compressor. Assuming the use of petro-

diesel, the engine is estimated to generate 75kW (100 HP SAE) running at 4,000 rpm.  It can 

generate 240 Nm (177 lb/ft) of torque at 1800 rpm.  

 

Catalytic Converter 

 The 2006 VW Jetta TDI is equipped with a three-way catalytic converter designed 

toconvert NO2 to N2 and O2 while converting CO and hydrocarbons to CO2 and water.  

 

The Driving Course 

 Unlike many vehicle emissions tests where vehicles are placed on a stationary 

dynamometer, the emissions data for this study were collected on-road under real driving 

conditions.  A five-mile section of US Highway 421 east of Boone, North Carolina was 

selected because it presented variation in the terrain and distance that would accommodate 

several runs with the fuel supply available.  This section of road is not indicative of all 

driving conditions but simply provided a basis of comparison between Safou biodiesel and 

other fuels. A more detailed description of the course is presented in Chapter 4 along with 

emissions data.  

 

 

 



9 
 

Research Questions 

RQ1: How much energy is embodied in Safou pulp, raw Safou oil, residual press-cake, and 

Fatty Acid Methyl Esters (FAME) biodiesel generated from the oil? 

RQ2: What are the characteristics of Safou oil extracted from fruit pulp that has spoiled and 

has become inedible? 

RQ3: What are the fuel characteristics (including GS/MS, HNMR, lubricity, flash point, 

cloud-point, and gel-point) of biodiesel (FAME) made from Safou oil?  

RQ4: What kind of emissions profile does Safou FAME fuel generate when combusted in a 

2006 Volkswagen Jetta TDI engine, and how does the profile compare to petro-diesel 

and soy biodiesel fuel run under similar conditions? 

 

Definition of Terms 

GC/MS –Gas Chromatography-Mass Spectrometry. This uses gas-liquid chromatography 

and mass spectrometry to identify differing substances at the molecular level within a 

test sample. 

H-NMR – Hydrogen-Nuclear Magnetic Resonance. This is used to investigate molecular 

structure by exposing hydrogen atoms to magnetic fields and electromagnetic impulses.  

How the molecule resonates indicates location of hydrogen and consequently molecular 

structure.   

Gel point/Pour point – The temperature at which a fuel ceases to flow and congeals. 

Cloud Point– The temperature at which a fuel ceases to be clear and molecules begin to 

clump together. 

FAME– Fatty Acid Methyl Ester: Biodiesel made with methanol. 
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FAEE– Fatty Acid Ethyl Ester: Biodiesel made with ethanol. 

TDI– Turbo Direct Injection: This refers to a diesel engine that has a turbo charger 

compressing air that is going into the combustion chamber, but also indicates how the fuel is 

being delivered into the combustion chamber. 

CO – Carbon Monoxide: In reference to combustion, presence of this gas is indicative of an 

incomplete combustion.  

CO2– Carbon Dioxide: This gas is indicative of a complete combustion where a single 

carbon has been completely oxidized and is molecularly stable.  

NO– Nitric Oxide: Can be indicative of nitrogen in the fuel but more commonly is a 

byproduct of combustion heat and resulting oxidization of atmospheric nitrogen in the 

cylinder.  

NO2 -Nitrogen Dioxide: A byproduct of in-cylinder combustion following NO formation, but 

also is produced in the exhaust stream by further oxidization of NO.  

THC—Total Hydrocarbons: Total non-methane hydrocarbons indicative of incomplete 

combustion in cylinder. 
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Significance of the Study 

Characterizing the potential of Safou oil for fuel purposes has several implications.  

Communities in West African countries are significantly dependent on financial gain from 

agrarian enterprise.  A crop that experiences a post-harvest loss in excess of 40% in areas 

where malnutrition is prevalent is a problem for social health as well as for the economies of 

operation.  The potential to reclaim that lost percentage for either food or other purposes is 

advantageous for producers and consumers alike.  

Furthermore, the development of crops with indigenous appeal can strengthen the 

agricultural and energy sectors of struggling economies.  Identifying the oil’s fuel qualities, 

whether favorable or not, will help to inform future crop and industry development.  Defining 

the fruit’s biofuel potential will also inform international investment and research into 

developing the crop for food, fuel, or a combination of the two while keeping in mind food 

and fuel security.   

The potential of another oil crop that requires less land than traditional crops such as 

soy or palm would be favorable in terms of land use.  The fruit’s general appeal as a food has 

established a market that is growing.  The crop’s intrinsic characteristics recommended it for 

agroforestry systems.  Furthermore, crop production is at present decentralized and any 

industrial development that used the fruit’s oil either for food, cosmetics, or fuel could have a 

positive decentralized economic impact.  A decentralized agro-fuel industry is key to the 

sustainability of the industry itself but also would support the transport of produce to 

markets.   
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Safou as an Energy Crop 

Though mentioned as a possible feedstock for biodiesel, no research has been done to 

identify Safou oil’s fuel characteristics as a straight vegetable oil (SVO), a fatty acid ethyl 

ester (FAEE), or a fatty acid methyl ester (FAME).  There are obstacles to its development as 

a biodiesel feedstock and investigations into the embodied energy and processing burden for 

oil removal have been limited.  Quantifying the energy density of the fruit pulp, seeds, oil, 

and press meal are essential steps in investigating energy potential.  A preliminary 

understanding of the energy demand to extract oil is essential to defining the obstacles and 

potential paths to processing.  Testing the Safou biodiesel fuel emission profile will provide 

information that quantifies whether a liquid fuel is desirable in terms of energy delivered and 

of greenhouse gas (GHG) production.  Not every oil feedstock is suitable for oil harvesting 

operations due to an unfavorable energy balance or poor quality of the end product.  It is also 

important to consider the larger socio-economic implications of such a development and 

place them in context of the food vs. fuel debate.  

The impetus for this research was founded on the fact that Safou crop losses en route 

to markets have been estimated as high as 50% (Silou et al., 2006)  Methods of mitigating 

post-harvest loss have been investigated with some success.  However, developing a process, 

product, and market for the lost material may be a better use of available resources in a 

tropical setting.   The fruit’s current oil production potential and its genetic variability that 
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may promise even more oil demands further consideration by food, cosmetics, and fuel 

industries (Arisa & Aworh, 2008). 

 

Biodiesel in a Global Context 

Growth Trajectory 

Energy is vital for socio-economic development (Demirbas, 2009).  Social and 

economic dynamics are global, as are the problems associated with securing energy and food 

supplies.  Vegetable oil crops, both edible and non-edible, are being investigated and grown 

in larger quantities throughout the world in developed and developing countries alike (Pahl, 

2008). World population is expected to grow, placing greater demands on a finite fossil 

energy supply.  According to the US Energy Information Administration’s 2010 Energy 

Outlook, marketed energy consumption is projected to grow from 495 quadrillion Btu in 

2007 to 739 quadrillion Btu by 2035.  This represents a 49% increase in global energy 

demand (U.S. Department of Energy [DOE], 2010).  Liquid fuels in 2007 accounted for 35% 

(174 quadrillion Btu or 86.1 million barrels) of daily global energy consumption.  The 

IEO2010 reference case predicts that by 2035 liquid fuels will make up only 30% of daily 

global energy consumption but will have increased to 223 quadrillion Btu or 110.6 million 

barrels a day.  Biofuels are projected to increase from 1.17 million barrels per day in 2007 to 

4.4 million barrels a day by 2035 (DOE, 2010).  The International Energy Agency (IEA), in 

its Blue Map Scenario, predicts the increase of biofuel energy production as well as land use 

as far out as 2050 (See Figure 2.1) (International Energy Agency [IEA], 2008).  The IEA 

compares biofuel production of first- and second-generation biofuels in terms of production 
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and land use.  Biodiesel is expected to account for about 50% of energy provided by bio-

based liquid fuels by 2035 and near 70% by 2050.  

 

Figure 2.1 A forecast for biofuels : Projected biofuel energy production (left) and projected  
land use for biofuels (right).  
Note. Adapted from “Energy Technology Perspectives 2008, Figure 9.12” by the International Energy Agency, p. 338.  

 

Global Land Use 

Only 2% of global arable land is dedicated to bio-energy crops while 30% of readily 

arable land is unused (El Bassam, 2010).  The earth’s land area is estimated to be 13 billion 

hectares.  Total rain-fed arable cropland is estimated at 4 billion hectares. Arable land 

currently in agricultural use is estimated to be at 1.6 billion hectares.  According to the Food 

and Agriculture Organization (FAO), global arable land scarcity is not a problem 

(Organization for Economic Co-operation and Development [OECD] & Food and 

Agriculture Organization [FAO], 2007).  Less that 20 million hectares are presently used for 

the biofuels industry collectively, compared to the 5000 million in use for crop and pasture 

land (International Energy Agency [IEA], 2007).  However, global land availability does not 

necessarily translate to regional security where issues such as water resources, soil quality, 

and weather can affect food more generally crop production (El Bassam, 2010). 
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Energy Inputs for Agricultural Production in Developed and Developing Nations 

Studies were conducted in the mid 1990s comparing fossil energy inputs per hour of 

agricultural work.  Comparisons included fossil energy that went into the production of any 

operation as well as into its operation.  Developed nations used about 85 MJ/h compared to 1 

MJ/h in developing countries. Much of the energy expenditure for developed nations lay in 

the mechanization of monocultures characteristic of industrialized agriculture.  Developing 

nations, on the other hand, tended to grow several crops side by side without large-scale 

mechanization, yet the input of fossil inputs for fertilizer and irrigation was higher at 7.4 

GJ/ha versus 4.9 GJ/ha in developed nations.  Workers in developed countries were able to 

cultivate 12 hectares per person per year while a single individual in a developing nation 

managed to cultivate only one hectare per year due to lack of equipment and other inputs.  

However, developing nations were more efficient at producing food per hectare.  Per-farmer 

output in developing countries was 24.2 GJ/ha compared to the developed country worker 

who managed to harvest 10.1 GJ/ha, an output ratio of 1:2.4 compared to the energy input 

ratio of 1:12 (Giampietro & Mayumi, 2009). 

 

Food Versus Fuel 

The complexity of the food versus fuel issue is dependent on “changing diets, 

urbanization, expanding populations, flawed trade policies, extreme weather conditions and 

speculation” (p.12) (El Bassam, 2010).  Biofuel production is essentially an extension of 

agricultural production, using many of the same resources. There is concern that fuel 
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production displaces food production and increases world hunger.  Food price spikes in 2007 

in conjunction with a growing agro-fuel industry led to the conclusion that biofuels were the 

cause of increased market prices (Lederer, 2007).  Bio-ethanol production in the European 

Union (EU) and the United States (US) is based on wheat and maize, respectively, both of 

which are important staple food crops. El Bassam points out in his recently published 

Handbook of Bioenergy Crops (2010) that, after adjusting for inflation, real-world prices of 

wheat in 1995 and 1996 were 15% higher than the highest price spike of 2007, while ethanol 

from wheat production in the EU did not begin in earnest until 2003.  In the mid 1990s there 

was no biofuel industry competing for food supply and inflating prices, yet food prices still 

rose.  Some of the problems in the world agricultural markets are structural, while others are 

random or cyclical (El Bassam, 2010).  The economic climate that drove the development of 

bio-energy crops is the same force that increased the cost of food production: The cost of 

crude oil prices rose well above $100 a barrel.  This increased the cost of food production 

and was a strong impetus for an already growing agro-fuel industry to invest in new liquid 

fuel facilities; it also encouraged research and development into second-generation energy 

crops.  In developing countries the limited supply of energy for farming systems has been a 

central problem regarding productivity.  This has further entrenched poverty and, in 

particular, has increased hunger (El Bassam, 2010) . 

Industrial scale agricultural practices have literally changed the landscape, as in the 

case of oil palm in Malaysia and Indonesia. However, this development was not driven by 

global fuel demand but by the food, soap, and cosmetic industries well before biofuels came 

into play.  Despite being the world’s highest-producing oil crop per hectare, palm only 

accounts for 10% of the world biodiesel market. According to the World Wildlife 
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Foundation, 50% of the items on supermarket shelves in developing countries contain palm 

oil or some derivative (The Economist, 2010).  The price of palm oil dropped from 

$1,250/ton in March of 2008 to $480/ton in November of the same year.  Similar trends were 

noticed in other edible oils (El Bassam, 2010).  At first glance it would appear that supply 

has exceeded demand for vegetable oil, with increased production and lower prices.  

However, under closer scrutiny similar price fluctuations were evident across other 

agricultural commodity markets (El Bassam, 2010).  It is notable that when vegetable oil 

prices were elevated the biodiesel industry was in full swing and the industry was lucrative 

even though 70% to 80% of production cost for biodiesel was frequently attributed to the 

cost of feedstock (Demirbas, 2009; Worldwatch Institute, 2007).  Now that vegetable oil 

prices have dropped to about a third of their former high levels, many biodiesel production 

facilities are struggling or have already failed.  The biodiesel industry is not primarily 

dependent on vegetable oil prices, nor is biodiesel demand the primary source behind an 

increase in vegetable oil and food prices. Agricultural commodities, edible or not, are tied to 

the price of energy inputs required to cultivate, harvest, process, and transport goods to 

market.  This is true of biofuel crops as well as other non-food crops like the 15 million 

hectares of coffee and tea that do little to alleviate hunger (El Bassam, 2010). 

 

Cautions and Response to Biodiesel Production 

The climate within which biofuels are being developed must be viewed with a 

measure of caution due to the complexity of the social, economic, and environmental factors 

that are involved. Problems endemic in modern industrial agriculture should not be adopted 

in the production of biofuel crops, but hopefully will be changed.  Members of the biofuels 
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industry understand the arguments that can be waged against large-scale conversion of arable 

land to growth of non-food crops.  The response that has assuaged some of the protest against 

biofuel feedstock production has been that these non-food crops can be cultivated on 

marginal land, thus avoiding a forced choice between food production and fuel production.  

For example, jatropha has received considerable attention because it provides quality oil, the 

oil is inedible, the crop can grow on marginal land, it is relatively easy to cultivate, and has 

the potential to out-produce oil palm. This approach does two things for the biofuels industry.  

First, it improves public perception of the benefits of biofuel crops.  Secondly, it secures a 

supply of oil for the biofuels industry that the food market cannot affect, thus separating the 

two vegetable oil markets.  Measures that can reduce the loss of food production capacity 

while promoting growth of non-food biofuel feedstocks are important for fuel and food 

security, as well as for the future of the biofuels industry. 

 

Biomass Energy and Energy Conversion 

 Today’s energy supply comes from three types of sources: fissile, fossil, and 

renewable (Demirbas, 2009).  Nuclear power and fossil resources are finite, while renewable 

energy resources are dependent in one way or another on energy captured from the sun (El 

Bassam, 2010).  Biofuels, and in particular biodiesel, are at the end of a very long energy 

capture and conversion process that begins with photosynthesis.  Although solar energy is 

free it is helpful to put in perspective the process and efficiencies that are incorporated in the 

production of the feedstock for biodiesel.  As an example, the oil palm is the number one oil 

crop in production today. The crop has an estimated yield of five metric tons of oil per 

hectare per year.  Oil palm has an energy density of 37.8 MJ/kg so that the crop’s energy 
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yield is about 189,000 MJ/ha per year.  This is equivalent to 0.003% of the average annual 

solar energy that hits a hectare of land in a year.  

 

Photosynthesis 

 In terms of energy, photosynthesis is a process that converts solar energy into 

biomass.  The sun delivers a relatively constant supply of solar energy to the earth.  This has 

been measured above the earth’s atmosphere to be 1.367 kW/m2.  The earth’s surface does 

not experience the full power of the solar constant due to atmospheric interference.  Global 

location and period of the year are also factors (The German Solar Society, 2009).  The 

average solar energy that does hit the earth’s surface per hectare over the course of a year is 

equivalent to the average amount received per hectare at 40° latitude. At that latitude a 

hectare is exposed to an average of 1,708,466 kWh of solar radiation over the course of a 

year.  If dry woody biomass has an energy density of 54 kWh/kg and the average solar 

energy were completely converted into woody carbohydrates, 30,000 metric tons of dry 

biomass would be produced per hectare, but this does not happen (El Bassam, 2010).  In 

terms of vegetable oil this would equal about 17,600 metric tons of oil per hectare assuming 

a specific heating value of 97kWh/kg and 100% conversion of solar energy to vegetable oil.   

 

Limiting Factors Specific to Photosynthesis 

Photosynthesis is limited to the range of light between 400 nm and 700 nm—

essentially the visible spectrum.  This range of light represents 43% of total solar radiation.  

Of this 43%, a maximum of 15.8% can be absorbed; this is the upper limit for absorption of 

solar radiation by plants.  The photosynthetic apparatus itself is only 30% efficient at 
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converting absorbed light into carbohydrates. This means that just over 2% of solar energy 

that hits a given plant-covered area is converted into biomass (El Bassam, 2010). Given the 

total solar energy mentioned above, then, we should produce 34,821 kWh/ha per year.  If 2% 

of average solar energy was converted completely to mass or liquid we would expect a yield 

of 644 t/ha of dry matter, or 352 t/ha of vegetable oil.  However, a substantial amount of 

energy is used for plant processes and is allocated to biological infrastructure in crops. In 

reality, the highest annual biomass crop production is considered exceptional at around 25 

t/ha, while the highest yielding commercial oil crop is oil palm, producing 4-7 t/ha of oil (El 

Bassam, 2010).  

 

Limiting Factors Pertaining to Agricultural Crop Yields 

Light is a primary factor for plant growth but production is frequently limited to 

growing seasons and contingent on other environmental factors such as soil quality and water 

availability.  Plant genetics and physical structure of a crop have a lot to do with overall 

efficiency in terms of process as well as land use. Crop density, which can increase the 

overall efficiency per land area, is dependent on the plant’s physical structure, genetic make-

up, and favorable environment.  These factors are a primary advantage of aquatic energy 

crops such as algae where plants can essentially be moved for optimal growth.  While oil 

yields for algae are estimated at 7-31 times greater than oil palm, algae has not been 

established as an energy crop due to complications in production (Demirbas & Demirbas, 

2011).   

 

 



21 
 

Biomass Energy Conversion Methods and Efficiencies 

Energy from biomass can be converted to usable energy by three methods. The 

primary method used is direct combust of biomass to produce heat, electricity, or a 

combination of the two.  The second method is to produce gaseous fuels such as methane, 

hydrogen, and carbon monoxide. This fuel can then be directly combusted or used for 

synthesis of other fuels. The third method is to produce liquid fuels such as ethanol and 

biodiesel (Demirbas, 2009).  As with most energy conversion technologies there are 

economies of scale, but certain technologies are intrinsically better at converting fuels into 

usable heat or power.  Potential efficiencies are reported to approach 90% for larger (1-20 

MWe) combined heat and power plants, and to be as low as 10% for on-site production of 

electricity using internal combustion engines (El Bassam, 2010).  Diesel engines, or more 

precisely the diesel cycle, have a theoretical efficiency of 56% (Nave, 2005).  In reality the 

efficiency hovers around the mid 45% and varies based on engine type, system, and 

operational conditions (Wikipedia, 2010).   

 

Safou (Dacryodes edulis) 

Formal Domestication of Safou 

Safou has been a fixture in western and central African agriculture for some time.  In 

1992, the first tropical tree domestication conference held in Edinburgh indentified certain 

criteria for identifying trees with potential characteristics that would recommend them for 

further domestication. The World Agroforestry Centre (ICRAF) led exercises to identify 

species that warranted further development. Dacryodes edulis, or Safou, was one of the fruits 

identified.  Since that time considerable research and effort have been invested in 
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quantifying, characterizing, and developing Safou as a crop for agroforestry systems 

(Tchoundjeu et al., 2008).   

 

Range of Dacryodes edulis 

Dacryodes edulis belongs to the family Burseraceae and is indigenous to West Africa.  

It is found from Sierra Leone down to Angola, and to the east as far as Uganda (El Bassam, 

1998).  The genus Dacryodes contains 34 species, two found in tropical South America, 19 in 

Africa, and 13 species in the Malaysian Archipelago (International Centre for Underutilized 

Crops, 2001).  The two most recent discoveries were reported in 1996 (Pierlot, 1996).  Not 

all of the species produce an edible fruit but the majority do, and the quality of the wood has 

made these trees valuable as a source for lumber. However, the fruiting trees are considered 

the most valuable.  

 

Safou Fruit 

 The fruit is widely eaten throughout the Gulf of Guinea region and has myriad names, 

the most common being Safou (pronounced să-fu) in Francophone areas, and African pear or 

plum in Anglophone areas.  Another common name is the butter fruit, which is a reference to 

the oily pulp which has been shown to have an oil content ranging anywhere from 30-70% of 

dried pulp weight (El Bassam, 1998). The fruit itself is, on average, about 4-15 cm long and 

3-6 cm in diameter.  The unripe fruit starts as a rosy pink and moves toward a dark purple as 

it ripens. A layer of edible pulp, about 1 cm thick, accounts for about half the fruit’s wet 

weight.  This pulp can come in several colors ranging from light pinks to yellows and greens, 

and it varies in flavor depending on the tree (El Bassam, 1998).  Traditionally, the fruit can 
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be eaten raw, poached, boiled, or roasted, but packaged products such as chips and spreads 

are being produced (Atanga, Bella-Manga, Talle, & Lewis, 2008).  Exudates or resins from 

the fruit stem and tree are used in traditional medicine, and have potential as a raw material 

for pharmaceuticals.  Resin is used to treat against parasites and is valued for aromatic 

qualities when burnt (Okwu & Nnamdi, 2008). 

 

Market & Crop Developments 

The fruit’s popularity as a food has helped develop national markets and international 

markets as far away as Europe (Awono, Ndoye, Schreckenberg, Tabuna, & Isseri, 2002).  

However, quantifying the value of the entire market has proven difficult, except in localized 

markets.  It is clear that the fruit is at the center of a lucrative and budding trade (Tchoundjeu, 

Kengue, & Leakey, 2002). Market growth has continued despite an estimated 40-50% loss in 

fruit post-harvest.  These losses are primarily attributed to the fruit’s rapid deterioration after 

harvesting, and to damage incurred during transport of the fruit.  Proper harvesting and 

storage techniques have been identified to extend shelf life, but the narrow window of time 

available from harvest to market still remains an obstacle (Silou et al., 2006).  The fruit’s 

potential has led to further research to identify and selectively breed for favorable tree and 

fruit traits (Atanga et al., 2008).  This research has helped to identify favorable strains and to 

quantify the tree’s oil-producing capacity.  A program to isolate favorable traits has led to the 

identification and cultivation of several varieties for commercial markets.  Of the fruit 

varieties considered, 90% are suggested for oil extraction (Atanga et al., 2008).  Due to the 

oil’s quality and the potential forproduction, oil extracted from the pulp has been suggested 



24 
 

as a non-traditional oil feedstock for the food and cosmetic industries (Atanga et al., 2008; El 

Bassam, 1998).     

 

Oil Production Capacity 

 Dacryodes edulis has only recently been selected for domestication and cultivation.  

Assuming the present yield capacity of trees Safou can produce as much oil as the cultivated 

oil palm which has enjoyed a century of selective breeding (National Research Council, 

2008).  This amounts to 4-6 tons/ha.  However, it has been reported that some tree strains 

have the potential to producing 10-15 t/ha, assuming organized cultivation and ideal growing 

conditions.  This is more than twice the volume of which the cultivated oil palm is capable.  

Unlike the oil palm, where pulp and kernel have significantly different oil, the oil present in 

the pulp and kernel of the Safou fruit is very similar. This characteristic has the potential to 

make harvesting the oil simpler and consequently more economical (El Bassam, 1998).  

  

Oil Appearance 

Raw Safou oil has an olive green color, is semi-solid at room temperature (Dzondo-

Gadet, Nzikou, Matouba, Etoumongo, Linder, & Desobry, 2005), and frequently separates 

into two layers: a liquid upper and a semi-solid bottom layer (Obasi & Okolie, 1993). The 

presence of the greenish hue is suggested to be due to the presence of chlorophyll pigments. 

Once bleached and degummed, the oil has a yellowish-brown coloring (Arisa & Aworh, 

2008).  
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Characteristics of Pulp and Seed Oil 

Fatty acid composition.  Biodiesel is formed by attaching an alcohol to fatty acids.  

The nature of the feedstock’s fatty acid composition has direct bearing on the characteristics 

of the fuel made.  Safou pulp and seed oil are made up primarily of three fatty acids that 

generally account for 95% of the total fatty acids.  The pulp oil includes palmitic acid 

(C16:0; 35.6 to 58.4%), oleic acid (C18:1; 16.9 to 35.5%), and linoleic acid (C18:2; 3.9 to 

31.5%)  (El Bassam, 1998).  This means that Safou pulp oil is composed of approximately 

50% saturated, 25% monounsaturated, and 25% polyunsaturated fat content.  This 

composition tends to make the oil stable even at high temperatures (Dzondo-Gadet, Nzikou, 

Matouba et al., 2005).  The presence of saturated molecules has been correlated to lower 

NOx emissions.  Conversely, the increased number of double bonds in unsaturated fatty acids 

correlates to increased flame temperatures during combustion and consequently to higher 

NOx emissions (Sun, Caton, & Jacobs, 2010). 

Melting points.  Safou’s primary melting point is at 14.5° C, more than 10°C lower 

than coconut and palm oil, which have major melting points at 25°C.  This would suggest 

that Safou oil has a lower cloud and gel point than biodiesel made from coconut or palm oil. 

This lower primary melting point is due to a larger fraction of fatty acids with shorter chain 

lengths in comparison to palm or coconut oils (Dzondo-Gadet, Nzikou, Matouba et al., 

2005).  Safou pulp oil does present three distinct melting points if thawed from a below-

freezing temperature.  These three melting points are directly correlated to its three main 

constituent triglycerides.  For purposes of separation of these triglycerides from one another, 

cooling the oil to a specific temperature and then centrifuging it can separate larger fatty 
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acids from the smaller ones.  Table 2.1 provides a comparison of Safou with various other 

oils.  

Table 2.1 
 Composition by Percentage (%) of Saturated and Unsaturated fatty Acid in Major Oils 
 Seed or fruit Carbon number 

      
 

C14 C16.0 C16.1 C18.0 C18.1 C18.2 C18.3 C20 
Peanut (USA) 0.04 10.6 0.13 2.41 47.05 30.77 0.14 1.31 
Colza- Canola 

 
5.56 0.12 1.38 58.25 22.17 8.9 0.22 

Sunflower 
 

6.27 
 

4.86 19.69 67.44 0.03 0.31 
Olive 

 
14.31 1.65 2.48 66.68 13.91 0.5 

 Soybean 
 

11.03 
 

3.91 23.04 56.84 7.9 
 Maize 

 
10.69 0.12 2 25.46 59.35 0.92 0.37 

Palm 0.89 43.14 0.18 5.41 38.72 10.59 0.27 0.39 
Safou 

 
42.4±0.4 0.2 ±0.1 2.5±0.1 27.8± 0.45 25.2±0.1 1.2± 0.5 

 Note. Adapted from “Characteristics and nutritional interest of safou pulp oil” by Dzondo-Gadet et al. ,2005 in Process 
Biochemistry. 40,p.? 
 

Viscosity and saponification values of Safou oil.  The ratio of saturated fatty acids 

to unsaturated fatty acids in Safou pulp oil is reported as being close to 1:1, which is similar 

to palm oil.  This value places it between fluid oils at R=4 and vegetable butters at R=0.25 

(El Bassam, 1998).  The oil’s viscosity decreases rapidly above 10° C. When compared to oil 

palm, the viscosity of Safou oil is half as much at 25° C (Dzondo-Gadet, Nzikou, Matouba et 

al., 2005).  Saponification values of raw oil were established by Arisa and Aworh (2008) to 

be 217.39 +/- 0.318.  This figure dropped substantially to 57.08 +/- .060 after degumming 

with 5% NaOH and bleaching (Arisa & Aworh, 2008).  Viscosity, saponification values, and 

degumming characteristics have bearing on the fuel production in terms of the oil’s 

processing, storage, and fuel production characteristics. 

Seed oil.  The seed oil characteristics are similar to, but not entirely like, the pulp oil 

characteristics.  This has bearing on the efficiency of oil extraction and consequently on the 

energy balance of biodiesel made from the Safou fruit. As with the pulp oil, the seed oil does 
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separate into upper and lower layers, similarly to the pulp oil, but the saponification value is 

lower (173-179), correlating to a slightly greater presence of unsaturated (palmitic acid) 

chains. The seed oil also has a low iodine value, which is said to make it less prone to 

oxidative rancidity (Obasi & Okolie, 1993).  Beginning with a raw oil with low iodine value 

translates into higher biodiesel yields assuming a base catalyzed reaction common to 

biodiesel production.  The specific gravity of raw seed oil was reported by Arisa and Aworh 

(2008) to be 0.9131, similar to that of pulp oil.  Arisa and Aworth also reported a lower 

specific gravity after bleaching.  The specific gravity of saturated or unsaturated oils has 

bearing on the measure yield in terms of initial volume and final fuel volume.  This is 

generally explained by losses to free fatty acids which drop out with the glycerin fraction 

(see Table 2.2).   

 

Table 2.2  
Characteristics of the Fixed Oil of the Seeds and Fruit Pulp of 
Dacryodes edulis 

 Seed Fruit pulpa 

Free fatty acids 7.3 14.1 

Saponification value 173.9 201.4 

Iodine value 8.8 59.6 

Specific gravity 0.843 0.9 

Non saponifiable matter 1 
 Fatty acids (%) 

  Palmitic 61.9 47.89 

Oleic 18.3 31.25 

Linoleic 19 17.5 
aAfter Omoti and Okiy (1987) 
Note. Adapted from “Nutritional constituents of the seeds of the African pear, Dacryodes 
edulis”.by O. N. Bonkens and O. N.  Paulinus.1992.. Food Chemistry, p. 297-299. 
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Processing Safou for Oil Extraction  

Drying.  Oil has been extracted from the pulp and kernel of Safou in several ways. 

For most oil expression methods drying the fruit to less than 10% water weight prior to 

extraction was essential, with the use of enzymes as mentioned offering the exception. Initial 

water content is about 60-70% of the fresh pulp’s weight.  Two drying methods were 

compared in one study. Solar dryers reduced the fruit moisture content from 70% to 13% in 

five days. An electric dryer reduced moisture content from 57% to 7% in just 15 hours 

(Kapseu, Avouampo, & Djeumako, 2002).   

Chemical oil extraction.  Chemical extraction was successful with the use of hexane 

after the pulp or kernel was dried and crushed (Dzondo-Gadet, Nzikou, Etoumongo, Linder, 

& Desobry, 2005).  Hexane achieved a near total extraction.  In other instances, the Bligh and 

Dyer method was used, which uses a solution of methanol and chloroform in ratios of 2:1 by 

volume.  This method is much faster than the use of hexane but is not necessarily as efficient 

in extracting the total lipid content from the fruit.   

Enzymatic oil extraction.  The use of enzymes has also been tested in the extraction 

of oil from Safou pulp and seeds. This method does not require drying.  Using the enzyme 

Viscozyme L. achieved extraction rates no less than 2% below percentages achieved with the 

Bligh and Dyer method.  This is promising for applications in extracting oil for food 

purposes (Dzondo-Gadet, Nzikou, Matouba et al., 2005).   

Mechanical oil expression.  The screw press method of oil removal was done by 

drying the fruit pulp and seed and using a screw-press.  This method is not as efficient as 

chemical extraction processes but is less expensive and requires less infrastructure and 

technical expertise.  Oil extraction as a percentage of dry weight was reported at 25-40% for 
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an electric press and at 23-28% for a manual press (Kapseu, Avouampo, & Djeumako, 2002). 

The specific press models were not mentioned. The residual oil cake from oil pressing, which 

has a protein content between 13-16%, can be used as an animal and fish food (Silou et al., 

2006). Table 2.3 provides a comparison of these extraction methods. 

 

Table 2.3 
Process and oil rate extraction 

Process Press Solvent Enzyme 

 manuala electrica  (Bligh/Dyer) (Soxhelt) Neutrase Viscozym L 
Extraction 
level (% of 

oil)  34.8 ±0.38 43.2±0.5 47.0 ±0.1 28 ±0.9 42 ±0.7 

Note. Adapted from “Post-harvest losses by natural softening of safou pulp (Dacryodes edulis) in Congo-Brazzaville” by T. 
Silou, D. Massamb, J. G. Maniongui, G. Maloumbi & S. Biyoko, 2006.  Journal of Food Engineering, 79, p. 392-400. 

Nutritional Value of Safou Fruit 

Safou makes a positive contribution to the lives of both producers and consumers.  

The Safou trade significantly impacts the livelihood of both farmers and merchants, 

financially as well as nutritionally. The fruits nutritional make up is summarized in  Tables 

2.4 – 2.6.  The tree provides food and a source of income prior to the harvest of staple food 

crops at a point when financial means are nearly exhausted.  It also provides other necessary 

resources like wood (Atanga, Bella-Manga, Talle, & Lewis, 2008).  As a food, the high 

concentration of polyunsaturated fatty acids in the fruit aid in reducing coronary heart 

disease.  A positive correlation between Safou consumption and improved quality of breast 

milk has also been reported (Dzondo-Gadet, Nzikou, Matouba, Etoumongo, Linder, & 

Desobry, 2005).    
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Table 2.4 
 

 
Proximate Composition of the Seeds and Fruit Pulp of Dacryodes edulis (g/kg-1 DW) 

 Seedsa Fruit Pulpb 

Carbohydrate 7.6 ± 0.91 135 

Protein (N x 6.25) 338 ± 4.38 259 

Oil 120 ± 3.74 319 

Energy (kcals/kg-1) 2736 ± 35.69 4447 

Ash 126 ± 2.27 108 

Fibre 173 ± 2.52 179 
aMean of four determinations ± SE 
bAfter Omoti & Oky (1987) 
Note. Adapted from “Nutritional constituents of the seeds of the African pear, Dacryodes edulis”.by O. N. Bonkens 
and O. N.  Paulinus.1992.. Food Chemistry, ,p. 297-299. 
 

 

Table 2.5 
Mineral Composition of Dacryodes edulis' Seeds  

(g/kg-1 DW) 

Mineral Content 

K 23.94 
Ca 7.3 
Mg 10.8 
Zn 0.36 
P 2.18 

Cu 0.05 
Note. Adapted from “Nutritional constituents of the seeds of the African pear, 
acryodes edulis”.by O. N. Bonkens and O. N.  Paulinus.1992.. Food 
hemistry, ,p. 297-299. 
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Table 2.6 
Amino Acid Composition of Dacryodes edulis' Seeds 

(% total amino acids) 

Amino acid Content 

Essential 
 Lysine 8.41 

Phenylalanine 4.97 
Leucine 18.56 
Isoleucine 7.5 
Methionine 0.94 
Valine 3.45 
Arginine 2.9 

Non-essential 
 Aspartie 13.08 

Serine 4.49 
Glutamie 12.02 
Proline 5.72 
Glycine 2.29 
Alanine 7.12 
Tyrosine 4.52 

Note. Adapted from “Nutritional constituents of the seeds of the African 
pear, Dacryodes edulis”.by O. N. Bonkens and O. N.  Paulinus.1992.. 
Food Chemistry, ,p. 297-299.  

 

Safou’s Contribution to Oil Crop Diversity  

 Propagation of Dacryodes edulis as a crop increases the diversity of highly productive 

vegetable oil species in the tropics (El Bassam, 1998).  The tree is native to the tropical 

regions of western and central Africa.  It has more to offer overall than the oil palm, as a 

shade tree, for firewood, and for timber. It also works well in multiple-crop agroforestry 

systems (Aiyelaagbe, Adeola, Poppola, & Obisesan, 1998).  It thrives in acidic soils where 

land tends not to be as fertile and is a significant supplement to fat and protein poor diets.  

Essentially, the Safou tree enhances the security of food supplies (El Bassam, 1998).  
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Genetic Obstacles to Propagation of Safou 

Morphological obstacles.  Dacryodes edulis demonstrates a high tree-to-tree 

variation in fruit traits, including size, shape, skin and pulp color, pulp thickness, taste, and 

shelf life. This complicates matching product to market desires. Selection of fruit types has 

not been fully developed or fully implemented to meet quantity and quality consumer 

demands (Atanga et al., 2008). Safou trade continues to grow but has not gained full 

momentum largely because of the tree’s genetic variability. 

Gender selection in propagation.  The species is composed of male and female trees 

but can display hermaphroditic traits.  It is also suspected of selecting gender during 

maturation. The natural ratio of male to female trees tends to be 1:1, and tree sex cannot be 

identified until well into growth, complicating efforts for orchard development to maximize 

fruit harvests.  Maturation of trees grown from seedlings has been reported to occur after 4 to 

5 years at the earliest (Aiyelaagbe et al., 1998). Seeds from trees that have favorable traits do 

not necessarily retain parent tree traits.  These characteristics have implications for 

propagation and crop development.  

Propagation techniques.  Aerial layering, a process where clones are created by 

cultivating branches off of adult plants, has shown to result in trees that retain a donor or 

parent tree’s favorable traits. Using this method, planted clones can begin fruiting within 18 

months. However, this method removes branches from a host tree and the total generation is 

limited to the number of favorable branches on the host (Atanga et al., 2008).  The fruit’s 

genetic variability could prove to be an advantage in developing fruit varieties that are 

inedible but that have high oil content.  It may be possible to develop different Safou 

cultivars with various end uses, either for fruit or for oil production.  
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Harvesting Methods and Socio-Economic Considerations 

There appears to be a human-gender-specific division of the labor associated with 

Safou fruit harvesting. Taking fruit from the tree, depending on its height, is accomplished by 

climbing the tree or knocking it down with a pole, work that is largely done by children or 

men. Women and children gather the fallen fruit, and women are responsible for transporting 

and marketing the fruit (Schreckenberg, Degrande, & Mbosso, 2002). The harvest of Safou 

in Cameroon tends to occur prior to other primary crop harvests and provides a source of 

money when household income is low and school fees are due due (Schreckenberg et al., 

2002).  At present, the structure of the Safou trade is such that men and heads of households 

own trees while the women are primarily in charge of the trade both at the village level and at 

the point of sale to consumers.  As Safou becomes a cash crop, there are worries that women 

will be by-passed by wholesale merchants who tend to be men and who bring their own 

laborers to harvest entire trees (Schreckenberg et al., 2002).   

 

Harvesting Considerations 

Timing of harvest.  Timing for the harvesting of fruit crops is subject to two criteria: 

The fruit’s physiological maturity and its commercial maturity.  Physiological maturity is the 

progression of the fruit’s developmental stages that culminate in the fruit’s senescence, or the 

point at which it begins to deteriorate or decay. Commercial maturity is whichever point of 

physiological maturity that matches infrastructure and market demand.  Harvesting methods 

also depend on the characteristics of the crop.  Methods are usually aimed at minimizing 

damage and decay (Ingram, Vince-Prue, & Gregory, 2008).  Safou fruit maturation is 

indicated primarily by color and senescence is indicated by a change in fruit firmness.  In the 
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case of Safou for oil production, harvesting would optimally be done at the point of 

senescence, since oil content is suspected to increase with duration of maturation on the tree  

(Kinkéla, Kama-Niamayoua, Mampouya, & Silou, 2006) 

Period of harvest.  Safou is found above and below the equator, and consequently 

the fruiting season is almost year-round.  The fruits begin to ripen in early January and can be 

available until late May in the D.R. Congo; in Cameroon, Safou fruit begins to ripen in May 

and is still available in early October (Isseri & Temple, 2002).  Though no information was 

found for the growing season for Safou in Angola, it is reasonable to assume that there could 

be a crop available in various African locations nearly year-round.  Fruit tend to present all at 

once in loose clusters, but maturation of the individual fruit occurs individually over time. 

Harvest challenges.  Harvesting Safou poses some challenges.  The determination 

for the correct time to pick a fruit is difficult to gauge, particularly when large quantities are 

being harvested.  Within horticultural practice, the most reliable method to gauge and predict 

fruit ripeness is degree-days or heat units, in addition to color, fragrance, or softening.  Using 

these methods and indicators, particularly in controlled greenhouses, commercial crop 

maturity can be precisely orchestrated (Poincelot, 2004).  

Mechanization of harvest.  Many methods of mechanized and semi-mechanized 

harvesting have been developed for various fruit tree crops.  Harvesting equipment has also 

been successfully developed for fruits that are easily bruised.  The efficiency of mechanized 

harvesting is, however, dependent on plant breeders developing cultivars with physical traits 

and ripening traits that aid in harvest (Poincelot, 2004).  The introduction of aerial layering 

where branches are transplanted into the ground has produced clone trees that remain close to 

the ground.  This development has aided in manual harvesting and would be essential to 
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mechanization providing a smaller tree that can either be shaken or the fruit knocked off with 

market ready machines.   

Post-harvest treatments.  After a fruit is picked it is still a living organism with 

biochemical physiology that affects quality, flavor, and texture (Poincelot, 2004). With Safou 

fruit, maturation and decay is primarily attributed to the action of pectin on the cellular level 

(Missang, Renard, Baron, & Drilleau, 2002).  After fruit is picked, respiration continues, 

whereby metabolic processes in the mitochondria oxidize sugars, releasing heat and CO2, 

and, in some cases, the process is anaerobic (Ingram et al., 2008).  The short shelf life of 

Safou fruit has prompted the use of airing the fruit and the investigation of wax coatings and 

cold storage to improve shelf life.  The most common method for transport of Safou is in 50 

kg mesh sacks that allow the fruit to breath.  Close proximity of the fruit increases the fruit 

temperatures and perspiration or condensation on the fruit.  

 

Safou Processing Considerations 

End-Use Requirements 

The method of processing Safou in order to remove the pulp is dependent on the 

purpose for the pulp and, in the case of oil extraction, the quality required for a given market.  

For food pastes and spreads only the pulp is useful, which requires separating pulp from the 

thin skin and central seed cluster.  This poses significant complexity for industrial-scale 

processing and mechanization.  If Safou is destined for oil production the pulp provides the 

highest yield; however, seed oil is similar in nature to pulp oil and does not necessarily need 

to be segregated.  
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Physical Properties 

Mechanization considerations.  The pulp of Safou can be firm enough to require 

mechanical separation of pulp from the seeds’ cluster, or soft enough that the pulp can be 

washed off.  Mechanized de-pulpers, decorticators, and de-stoners are market-ready for 

small-scale fruit processing applications in developing country situations (Intermediate 

Technology Development Group, 1992).  These machines could be modified for application 

in safou pulp and seed removal, however there is no standard mechanization for this 

processes.   Market and end product dictate process and at present safou production is 

primarily a fresh fruit industry.   

Water separation.  When Safou pulp is still firm it floats, but the seed center will 

sink if the membrane around the cluster is sufficiently ruptured for trapped air to escape.  On 

the other hand, fruit pulp that is sufficiently softened will come off of the central seed cluster 

and pouch and sink while the intact cluster will float.  The potential for water separation of 

the pulp is possible in either scenario.  However, the advantages gained through water 

separation would have to be weighed against the energy needs of subsequent processes.  

 

Drying Safou Fruit Pulp 

Introduction 

The method of oil removal used for the samples in this research required the drying of 

Safou fruit pulp.  Understanding the drying process was essential to this research for three 

reasons. First, the drying process has bearing on the quality of the oil and potentially the 

biodiesel end product.  Secondly, it informs us of the general process demands for further 

development. Thirdly, this intermediary process has considerable energy balance 
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implications and understanding it is essential to evaluating the overall process and Safou’s 

potential as an energy crop. All three of these reasons encompass issues of quality, energy, 

and potential and are essential to understanding the fruit’s viability as a biofuel feedstock.  

 

Drying Background 

The goal of fruit drying is to remove water; this is most commonly done with heat 

and convective air (Jayaraman & Das Gupta, 1992). Fruit samples are placed in an oven at 

temperatures between 70-105° C and monitored for weight change. A zero point is achieved 

when weight reduction ceases (Karathanos, 1999).  Once a zero point is established, 

monitoring the weight change of the sample informs the moisture percentage based on 

weight.  One of the primary objectives of food drying is to convert a perishable item into a 

stabilized product that can be stored for extended periods (McMinn & Magee, 1999).  In 

addition, food drying can enhance quality, increase ease of handling, conserve energy in 

subsequent processes, reduce the cost for transport, and prepare material for secondary 

processing (Sokhansanj & Jayas, 1995).  

 

Food Drying Kinetics 

Moving water out as efficiently as possible with minimal energy requires managing 

several changing interactions. Moisture diffusivity, thermal conductivity, density, specific 

heat, inter-phase heat, and mass transfer coefficients are some of the primary factors 

considered when modeling the drying process (Karathanos, 1999).  First, it is essential to 

understand the properties of water and the three primary drying variables including water-

water, water-solid, and water-air interactions.  Secondly, the drying process, in which all 
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three variables are fluctuating, can be understood in terms of initial drying dynamics and 

terminal drying dynamics.  The upshot is that   removing a pound of water from food matter 

is not as straightforward as boiling off a pound of water.  Drying foodstuff requires more 

energy because water must overcome not only water-water bonds but also water-solid bonds 

with the vegetable material. Furthermore, water must travel from inside fruit structure to the 

exterior, which also requires energy.  In short, the primary elements involved in drying fruit 

pulp include the nature of the moisture and the changing drying dynamics.  

Free and bound moisture.  Water in fruit is considered to be either “free” or 

“bound” moisture.  Free water resides in the interstitial spaces and pores and is held by 

physical forces related to surface tension. This moisture content behaves similarly to pure-

liquid water. The bound fraction, which is sorbent or solute-associated water, presents kinetic 

and thermodynamic properties differing from pure-liquid water.  This fraction is held inside 

and outside of the fruit cell walls by water-solid interactions.  This layer forms a monolayer 

foundation for multi-layer water-water interactions (McMinn & Magee, 1999). These water-

solid interactions require additional energy to overcome compared to water-water bonds.  

Initial drying dynamics.  During drying the free water evacuates the cells, making its 

way through the cellular capillaries to the surface.  Initially this causes structural shrinkage that 

ceases before drying is complete (Brennan, Butters, Cowell, & Lilley, 1990). At this point there 

are voids and hollows in the cell structure, which decrease thermal transfer.  Thermal 

conductivity in foods is primarily dependent on chemical composition of aqueous constituents.  

The presence of oil in cellular structures inhibits the flow of moisture because of the oil’s 

hydrophobic nature (McMinn & Magee, 1999).  
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Terminal drying dynamics.  Once the structural shrinkage ceases, the drying of the 

remaining water fraction is affected more by the physical properties of the vegetable 

material.  These properties include fiber orientation and solid thermal properties. How the 

water migration is controlled as it moves toward the surface has a direct bearing on the 

characteristics of the material that is left behind (McMinn & Magee, 1999). In other words, if 

the temperature during drying is elevated to force vaporization of the water content it may 

cause structural degradation at the cellular level.  The material of cell structures may not be 

affected by boiling temperatures; however, the boiling water can physically affect the plant 

structure. Towards the end of drying there are more interstitial spaces to accommodate the 

evaporation of moisture so that elevating temperatures toward to the end of the drying 

process is favorable in terms of removing moisture content (McMinn & Magee, 1999).  

However, this may need to be balanced with the need to preserve the nutrients in organic 

cells.  Elevated temperatures have been observed to cause oil to split, forming free fatty 

acids; this has direct consequences in terms of processing efficiency (Kundu, 2004). 

Drying Curves 

While initial and terminal drying dynamics address the general progression toward 

drying, the entire process as represented with a fruit-drying curve is frequently separated into 

three phases. The first phase is that of the loosely-bonded water evaporating. This is also 

known as the constant drying rate, in reference to the constant presence of moisture 

evaporating at the material surface producing a relatively linear drop in weight 

(Jaturonglumlet & Kiatsiriroat, 2010). The second phase, which represents the last water to 

go, is termed the falling rate period that occurs as the surface dries and evaporative action 

begins to occur inside the cellular structure. This phase is primarily comprised of evaporation 
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of the monolayer, which is directly attached to surface solids by strong molecular forces. 

This moisture represents about 3-6% of the weight of the samples (Karathanos, 1999). The 

last phase, termed the full falling rate, refers to when solids begin to evaporate as well 

(Jayaraman & Das Gupta, 1992). In sugary foodstuffs, for example, fructose begins to break 

down and evaporate in the full falling rate phase.  The absence of a full falling rate can be 

indicative of an absence of fructose content (Karathanos, 1999).  

 

Air Temperature and Velocity  

 The transfer of moisture out of a material is primarily dependent on air temperature 

and secondarily on airflow.  Air temperature is an influence during the entire process.  Air 

velocity has great effect while moisture content is high but does little at low moisture content 

(McMinn & Magee, 1999).  In practical solar applications, allowing convection to take place 

during the initial stages is effective at transporting moisture away. On the other hand, during 

the last segment of the drying process it is more advantageous to close the system and allow 

temperatures to rise.  An increase in far-infrared radiation directly hitting the media being 

dried results in shorter drying times (Jaturonglumlet & Kiatsiriroat, 2010).  This may explain 

some differences between the efficiencies of direct and indirect solar drying applications. 

 

Vegetable Oils and Pressing 

Overview 

 Vegetable oils are lipids, which are contained in the cell structure of plant matter.  

Compromising the cellular structure and liberating the oils is done by orchestrating the 

mechanical as well as the chemical effects of pressure, temperature, duration under 
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compression, and moisture content. In general, expression is a term denoting mechanical 

removal of oil, while extraction refers to chemical removal (Khan & Hanna, 1983).  In 

practice, highest yields incorporate elements of both expression and extraction.  

 

Cold Press   

 By eliminating the chemical action of heat, cold pressing does not chemically alter  

the feedstock.  The temperature threshold for cold pressing is debated, but 90° F is at the 

bottom of the debated range. Cold-pressed oil is generally considered more valuable than 

hot-pressed oils, but cost is also affected by yields and process efficiency (National 

Sustainable Agriculture Information Service, 2008).  

 

Extraction 

 Heat, digestion, solvents, and enzymes are all extractive techniques that chemically 

affect the oil feedstock.  Oil content is liberated by action on the cellular structure. Heat 

denatures and segregates proteins, collapsing cell structures and making oil globules less 

viscous, thus increasing flow during expression (Khan & Hanna, 1983; Owolarafe & 

Faborode, 2008).  Digestion, heating the feedstock, or allowing it to rot all essentially 

chemically break down cellular structures as resident enzymes such as pectin metabolize and 

act on the cellular structure.  In the case of solvent extraction, mechanically pre-crushing the 

feedstock to shear feedstock structures improves yields by increasing surface area on which 

the solvent can act.  Pulverizing feedstock before enzyme application also accelerates the 

efficiency of extraction.  More recent developments using super-critical gasses for 
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mechanical and chemical extraction change the feedstock and are also more efficient when 

solvents are incorporated (Salgın, 2007). 

 

Expression 

 The screw press is the most widely used method of vegetable oil extraction (Mrema 

& McNulty, 1985; Singh & Bargale, 2000). The design of a screw press is a balance of 

objectives that work against one another.  On one hand, compression ruptures cellular 

structure, allowing oil to flow out; however, compression also collapses the organic structure 

and can trap oil (Khan & Hanna, 1983).  Cellular rupture and the timed collapse of the 

organic structures in a press require control of moisture content, compression, duration of 

compression, and heat.  If there is too much moisture compression does not occur because 

the friction coefficient decreases; too little and oil remains in the feedstock and the press may 

bind-up (Singh & Bargale, 2000).  In the case of excessive heat the oil may lacquer, affecting 

oil quality or sealing in oil, while too little heat slows oil flow.  Balancing moisture, heat, 

compression, and time in the press can be complicated, but managing this balance is essential 

for efficient extraction.   

 

Balancing Moisture, Heat, and Compression 

Moisture.  Controlling the moisture content of a feedstock is essential for several 

reasons.  One reason is for storage and long-term stability of the feedstock. Another is to 

maximize extraction yields.  Excess water in the feedstock decreases the friction coefficient 

by increasing plasticity (Singh & Bargale, 2000).  At the other extreme, excessively dry 

feedstocks exceed the ideal friction coefficient, binding up the press and increasing wear.  
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The ideal moisture percentage is one that maintains a constant friction, compromises cell 

structure, and aids in oil flow.  The effect of moisture content is specific to each feedstock 

but as a general rule is ideal around 8% wet weight for typical press conditions (Khan & 

Hanna, 1983).  This percentage is interesting in light of the 3-6% moisture attributed to the 

monolayer of water that attaches to inter-cellular structures reported by McMinn and Magee 

(1999).  This would suggest that on the cellular level ideal moisture content exceeds the 

monolayer of water molecules in the press feedstock.  

Heat.  As press science has progressed, the ability to control heat has improved.  Heat 

may be applied to a feedstock before it is pressed, and additional heat is generated by friction 

in the press.  More recent developments in press design have included the use of heating 

collars on the press housing.  This is more efficient than preheating feedstock and is better 

suited for maintaining press temperatures.  To maximize press extraction, maintaining 

temperatures above 100° C improves both progression of material through the press and 

yield.  However, it is important to note that excessive heat will also undermine the 

compression of the feedstock and reduce yield.   Energetically it is more efficient to generate 

heat with a heated collar than to generate that same heat mechanically.  Temperatures in 

excess of 100° C would require significantly more friction, requiring additional power inputs 

as well as a press design that could accommodate the stress.  As mentioned before, high 

compression does not necessarily correlate to more oil extracted.  It is a matter of controlling 

the progression of compression so that oil may escape.  

Heat also affects the structure of the feedstock.  It deteriorates the cell structure, 

changing the physical and chemical characteristics of the material.  These effects can be 

orchestrated with moisture content and with duration of time in the press to help maximize 
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yields. Once the raw oil has been collected it usually undergoes refining, which begins by 

removing particulates and other impurities.  The extent of refining after pressing depends on 

the oil’s final purpose.  In the case of biodiesel the oil needs to be dry and free of 

particulates.  Processing the oil by degumming and bleaching is not necessary because much 

of the material removed during these processes is removed by the transesterification process.  

Compression.  Compression in a screw press is generated by both axial and radial 

force (Ward, 1976). A continuous screw press can be conceived of in three compression 

sections: The feed section, the ram section, and the choke section, see Figure 2.2.  At the feed 

section, radial compression macerates and homogenizes feedstock as it progresses to the ram 

section.  According to Ward (1976), the axial compression must always exceed radial 

compression forces.  In other words, the pressure exerted by the screw along the press is 

slightly greater than the pressure out against the housing.  When radial force exceeds axial 

force the press either binds up or material finds its way out axially through the press housing 

and into the oil.   

The purpose of compression is to reduce the volume of a feedstock in order to force 

the oil out.  Theoretically, a given feedstock will have a particular compression ratio where 

all the oil is removed. The peanut, for example, has a theoretical ratio of 4.3:1, where initial 

peanut volume of 4.3 must be reduced to 1 for complete oil extraction (Singh & Agarwal, 

1988).  Singh and Argawal define screw-press compression ratios as “the ratio of volume of 

material displaced per revolution of the shaft at the feed section to the volume displace at the 

choke section” (p. 77). A common ratio for a screw press is 10:1. This ratio, though well 

above most theoretical ratios for feedstocks, is necessary to accommodate for slippage and 
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rotation of the feedstock as it is compressed (Singh & Bargale, 2000).  Compression can be 

regulated by pitch of the screw, depth of the channel, and tapering of the screw.  

Figure 2.2. Compression curve and barrel pressure profile 
Note. Figures adapted from “Expression of Oil from Oilseeds - A review” 
 by L.M. Khan and M.A. Hanna, 1983. Journal of Agricultural Engineering  
Resources, 28, 495-503. 

 

Screw-Press Advantages and Disadvantages  

The primary advantages stated by Singh and Bargale (2000) for screw-press 

popularity are its simplicity and relative safety, making it more attractive than use of solvent 

extraction equipment. Another big advantage is that it produces end products that are free of 

chemicals (Khan & Hanna, 1983). The screw-press has sufficient extraction percentages, 
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usually above 80% of total potential oil yield. The byproduct and meal left after extracting the 

oil are usually valuable for food additives and livestock feed. The flexibility of being able to 

modify a press for different feedstock is also an advantage. In developing countries, the sturdy 

build of a screw-press means it can endure misuse by inexperienced operators and survive until 

operators better understand press and feedstock control. The increased use of human labor also 

makes the cost of operation acceptable in relation to market prices for the oil and by-products 

(Singh & Bargale, 2000).  

Disadvantages of the screw-press include the difficulty of controlling feedstock 

characteristics for optimal extraction.  Press set up and clean up can be time consuming and 

its use only really makes sense when large, continuous runs can be undertaken.  At 

approximately 80%, the typical oil yield does not represent a complete extraction of the oil 

content. However, oil remaining in the meal can be recuperated either by selling the meal or 

combusting it for process heat, or simply by composting the material for soil amelioration 

(Encyclopædia Britannica, 2010).   

 

Press Efficiencies 

Oil expression is contingent on feedstock characteristics and their reaction to the 

forces in the press. Press efficiency can be as high as 90%, but this usually requires multiple 

passes through the press (Khan & Hanna, 1983).   Secondary passes can require less energy 

in comparison to the first passes with similar oil extraction rates. However, this is not always 

true as feedstocks become drier and realized compression ratios approach the actual 

compressibility limit of a feedstock (Singh & Bargale, 2000).  
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Press energy efficiency calculations are dependent on expression efficiencies and 

overall yield.  Press energy efficiency can then be calculated with energy used per volume of 

oil expressed.  This calculation is an essential part of analyzing biofuel applications. 

 

Biodiesel Production  

 Biodiesel is a petro-diesel fuel substitute produced from vegetable oils.  The process 

of converting raw oil to usable fuel can take several reaction paths to end up with esters.  

Esters are formed by combining free fatty acids from triglycerides with an alcohol such as 

methanol or ethanol to produce fatty acid methyl esters (FAME) or fatty acid ethyl esters 

(FAEE) (Gupta & Demirbas, 2010).  Industrial production of biodiesel most commonly uses 

methanol as the alcohol because of its cost and because it has a less hydrophilic nature than 

ethanol. 

 

Biodiesel Feedstock 

 Triglycerides.  Fats and vegetable oils are triglycerides. Triglycerides are made up of 

a single glycerol back-bone molecule and three fatty acids of various chain lengths.  The 

triglycerides are the feedstock for most biodiesel produced today, with the exception of bio-

based diesel synthesized using the Fischer-Tropsch method (Gupta & Demirbas, 2010).  

Free Fatty Acids.  Cleavage of the fatty acid from the glycerol molecule is most 

commonly achieved via hydrolysis during oil processing and extraction. This produces free 

fatty acids (FFA). This also explains in part the increased presence of free fatty acids in fryer 

oil the longer it is used. The presence of water and FFAs reduce yields by consuming catalyst 

and feedstock in the production of unwanted soaps (Kusdiana & Saka, 2004). For the purpose 
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of transesterification, increased FFA content reduces the potential yield of biodiesel because the 

FFAs are neutralized and drop out in the glycerol.  The excess of FFA where acid-catalyzed 

esterification is concerned actually improves reaction time.  However, esterification is much 

slower compared to base-catalyzed transesterification (Kusdiana & Saka, 2004).   

Alcohol.  The process of making biodiesel requires the use of an alcohol which is 

attached to the fatty acid by a catalyst.  This produces an ester, which is then labeled 

according to the alcohol that has been used. Thus, we commonly see the names fatty acid 

methyl ester (FAME) or fatty acid ethyl ester (FAEE) attached to biodiesel based on the 

alcohol used.  

Catalyst.  Catalysts used to produce biodiesel can be acidic, basic, or enzymatic.  The 

most common base catalysts are potassium hydroxide (KOH) or Sodium hydroxide (NaOH).  

Common acids include sulfuric, hydrochloric, and sulfonic acids (Gupta & Demirbas, 2010).   

 

General Reactions 

 There are four basic reactions that must be considered during the production of 

biodiesel,  summarized in equation form below (Guibet, 1999).  Different reaction paths can 

be taken to arrive at an end-stage ester or biodiesel; however, these reactions provide the 

general overview of hydrolysis, saponificaiton, esterification, and transesterification: 

Hydrolysis:   Triglyceride + Water  ↔ Free Fatty Acids + Glycerol 
 
Esterification:  Free Fatty Acid + Alcohol ↔ Ester + Water 
 
Saponification:   Triglyceride + Base ↔ Metallic Salt (soap) + Glycerol 
 
Transesterification: Triglyceride + Alcohol ↔ Ester + Glycerol 
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Biodiesel can be produced using acidic, basic, or enzymatic catalysts and supercritical 

reactions in various combinations (Basah, Gopal, & Jebaraj, 2009).  The most common 

method of biodiesel production, however, remains that of base-catalyzed transesterification  

(Gupta & Demirbas, 2010).  This process occurs in three consecutive and reversible step-

wise reactions as illustrated by the reaction equations below.  A catalyst is attached to an 

alcohol (R+OH) and then collides with a triglyceride. A triglyceride is converted to 

diglyceride, then to a monogylceride, and finally a glycerol (Gupta & Demirbas, 2010).    

Triglyceride + ROH ↔ RCOOR1 + Diglyceride 

Diglyceride + ROH ↔ RCOOR2 + Monoglyceride 

Monoglyceride + ROH ↔ RCOOR3 + Glycerol      

 
Molar Ratios   

Transesterification can be understood best in terms of molar ratio.  During 

transesterification, each triglyceride is broken down into three esters and a glycerol molecule.  

This means that for each mole of oil three moles of alcohol are required, so at the completion 

of the reaction the molar ratio is 3:1. The kinetics of transesterification requires a surplus of 

alcohol and experience has shown that a 6:1 ratio of alcohol to oil is required.  The catalyst is 

frequently conveyed in terms of weight in relation to the alcohol.  NaOH, for instance, is 

expressed as 5% by weight of the methanol.  This is a 25:1 molar ratio of alcohol to catalyst.  

Catalyst and alcohol values can be flexible, but changes in these molar ratios can present 

problems.  If there is not enough alcohol easily available for the catalyst it will begin to react 

with triglycerides and create soap, which is why there must be enough alcohol available after 

the transesterification process to chemically occupy the catalyst as well as to drive the 

reaction.  Insufficient catalyst results in more time in order to complete a reaction.   
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ASTM Fuel Specifications 

Fuel Characteristics and ASTM Specifications 

The American Society for Testing and Materials (ASTM) specifies standards for 

biodiesel in the United States.  In the US, the battery of tests that pure biodiesel must pass are 

grouped and referred to as ASTM D6751-09 (See Table 2.7) (ASTM International, 2009a).  

Stock used specifically for B6-B20 blends (those fuels that are a mix of petro and biodiesel) 

can be tested under slightly different specifications (ASTM International, 2009b).  All ASTM 

specifications require biodiesel to meet the same standards irrespective of feedstock. 

Feedstock and transesterification processes do have an effect on fuel characteristics 

(Demirbas A. , 2007). 

 

Biodiesel Use and Emissions 

Advantages and Disadvantages 

Biodiesel is a renewable and non-petroleum based liquid fuel that can substitute for 

the use of petroleum diesel.  Minor, if any, modifications are required for use of biodiesel in 

current diesel engines for operation.  These modifications are generally issues pertaining to 

fuel system materials compatibility (Kemp, 2006).  Biodiesel is less toxic and biodegradable, 

reducing pre-combustion emissions associated with fuels (Guibet, 1999).  Post-combustion 

emissions such as particulate matter (PM), carbon monoxide and dioxide (CO/CO2), non-

methane hydrocarbon (HC), and other non-regulated emissions are generally reduced.  Nitric 

oxide(NO) and nitrogen dioxide (NO2), however, are not always reduced and continue to be a 

focus of emissions reduction efforts as they pertain to biodiesel (Sun, Caton, & Jacobs, 

2010). Both oxides of nitrogen are jointly termed “NOX” but written as NOx.  The issue of 
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NOx, as well as a lower heating value, reduced cold flow properties, lower volatility, higher 

viscosity, and a shorter shelf life all remain obstacles to biodiesel adoption  (Gupta & 

Demirbas, 2010; Worldwatch Institute, 2007). 

Table 2.7 
Summary of ASTM Tests Required for Biodiesel and Blend Certification 

Property Method Limits Units 

Calcium & Magnesium, combined   EN 14538  5 max. ppm (ug/g) 
Flash Point (closed cup)  D 93 93 min. C° 
Alcohol Control (One of the following must be met)    1. Methanol Content  EN14110  0.2 max. % mass 

2. Flash Point  D93  130 min. °C 
Water & Sediment  D 2709 0.05 max.  % vol. 
Kinematic Viscosity, 40 C  D 445  1.9 - 6.0 

 
mm2/sec. 

Sulfated Ash  D 874  0.02 max.  % mass 
Sulfur 

    S 15 Grade D 5453 .0015 (15) max. % mass (ppm  
S 500 Grade D 5453 .05 (500) max. % mass (ppm  
Copper Strip Corrosion   D 130 No. 3 max. 

 Cetane  D 613  47 min. 
 Cloud Point  D 2500   report C° 

Carbon Residue 100% sample  D 4530*  0.05 max.  % mass 
Acid Number  D 664  0.5 max mg KOH/g 
Free Glycerin  D 6584  0.02 max. % mass 
Total Glycerin  D 6584 0.24 max.  % mass 
Phosphorus Content  D 4951  0.001 max.  % mass 
Distillation, T90 AET  D 1160  360 max. °C 
Sodium/Potassium, combined  EN 14538  5 max. ppm 
Oxidation Stability   EN 14112  3 min. hours 
Cold Soak Filtration Annex to D6751 360 max.  seconds 
For use in temperatures below -12 C Annex to D6751  200 max.  seconds 

Unique to Biodiesel Blends B6-B20 
Ash Content  D 482 0.01 max. % mass 
Carbon Residue 10% sample  D 524*  0.35 max. % mass 
Lubricity, HFRR at 60C D 6079 520 max. microns 
Biodiesel Content, % (V/V) D 7371 6.-20. range % Vol. 

          Note: Bold text indicates test performed on blends.  All Blending Stock must pass ASTM B100 Tests before blending 

 

Emissions and Regulation 

 Combustion of fuels within the transportation sector represents a large fraction of 

overall energy use and emissions (Kaiper, 2004). Regulative action in Europe and the United 

States came into effect during the 1960s and 1970s (Guibet, 1999).  The goal of regulation 

has, in part, been to reduce emissions that are harmful to the environment.  Carbon dioxide 
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and methane are greenhouse gases (GHG), yet regulation for these two gases is not yet 

directly addressed in industry or vehicle emissions in North America (Kemp, 2006). 

Regulations do limit the amount of carbon monoxide (CO), nitrogen oxides (NOx), sulfur 

oxides (SOx), non-methane volatile hydrocarbons (HC), and particulate matter (PM). These 

emissions are considered to have a greater detrimental effect on the environment.  

Comparison of these compounds to CO2 and their global warming potential (GWP) has been 

the subject of extensive study to define compounds in terms of carbon dioxide equivalent 

(CO2e) (Forster et al., 2007)  

 

Emissions Mitigation Strategies 

Several methods have been developed to mitigate vehicle emissions.  Catalytic 

converters have been placed in exhaust lines to complete partial combustion reactions.  Fuel 

characteristics and composition have also been changed, in particular the reduction of sulfur in 

diesel, to promote more complete combustion and to reduce emissions of regulated compounds 

such as CO, NOx, and SOx.  Engines and control systems have been designed to better control 

the timing of fuel injection for improved engine performance and to achieve a general 

reduction in emissions generation (Guibet, 1999). 

 

Biodiesel Versus Petroleum Emissions 

When biodiesel and petroleum diesel are compared holistically, total GHG emissions 

are significantly reduced and offset (Sheehan, Camobreco, Duffield, Graboski, & Shapouri, 

1998).  A holistic comparison is dependent on total petroleum-based emissions generated 

during production, emissions from vehicles, and total CO2 offset by crop sequestration.  
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Because the two fuels differ in characteristics, method of production, and emissions, it is 

important to note how biodiesel is compared to petro-diesel.  The United State 

Environmental Protection Agency (EPA) showed that pure biodiesel used in conventional 

heavy-duty diesel engines increased NOx emissions by 10% compared to conventional diesel.  

In contrast, CO and PM were reduced by approximately 48%.  HC saw the greatest reduction 

at approximately 78% . Emissions varied depending on the type of biodiesel feedstock as 

well as the type of conventional diesel with which it was blended (US Environmental 

Protection Agency [EPA], 2002).  Further research has shown that NOx emissions are not 

consistently higher across fuel blends, particularly when accounting for new engine design. 

Differences do occur across engine type, technology, and operating conditions, as well across 

feedstocks (Sun et al., 2010).  NOx remains the primary obstacle for biodiesel in terms of 

emissions and is a focus of the emissions data for this study. 

 

Testing and Quantifying Post-Combustion Emissions 

Post-combustion emissions regulations are quantified in terms of mass per distance 

accumulated for light-duty vehicles and mass per unit of energy produced for commercial 

vehicles.  Emissions samples are collected from the exhaust line by a constant volume 

sampler (CVS) measuring system. Heated filters, chillers, flame ionization detectors (FID), 

non-dispersive ultraviolet (NDUV) analyzer, and non-dispersive infrared (NDIR) analyzers 

are used to test particulates and gases during standardized operating conditions.  Light-duty 

vehicles are typically tested on dynamometers and run through standard driving cycles.  

Heavy-duty engines are typically installed on a test bench and emissions recorded for speed 
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and load separately (Guibet, 1999).  The controlled tests established for regulation purposes 

do not necessarily mimic on-road driving conditions, however. 

 

Chemical Formation of Nitrogen Oxides  

Oxides of nitrogen are the primary pollutant expected to increase during the use of 

biodiesel.  Understanding the formation of the gas and potential mitigations of the gas has 

been the focus of substantial research (Sun et al., 2010).  The formation of NO or NO2 is 

described by the three reversible equations in shown below (Bowman, 1975).  The formation 

of nitrogen oxides increases exponentially with the increase of combustion temperatures 

(Dean & Bozzelli, 2000).  Fuel-bound nitrogen is considered to be less important to the 

formation of oxides of nitrogen than is the thermal mechanism (Sun et al., 2010).  

Equation 1:  O + N2 ↔ NO + N 

Equation 2:  N + O2 ↔ NO + O 

Equation 3:  N + OH ↔ NO + H 

 

Fuel Properties 

Physical and chemical.  Fuel is tested for physical and chemical properties.  Physical 

properties mainly affect physical processes such as density, while chemical properties mainly 

affect chemical processes such as energy conversion.  Biodiesel fuel and blends are regulated 

by established ASTM standards (see Table 2.7) for general inclusion into the petro-diesel 

infrastructure.  Physical properties such as viscosity and density affect injection timing and 

fuel atomization and can indirectly affect combustion and emissions formation by varying 

engine system responses (Sun et al., 2010) See table2.8.   Chemical properties such as 



55 
 

hydrocarbon structure and aromatic content tend to dominate a fuel’s effect on combustion 

and emissions formation (Sun et al., 2010).   

 

Fuel Characteristics and Engine Response 

The diesel engine industry has designed engines for petroleum-based fuel.  Although 

diesel engines can run on biodiesel, the combustion and emissions profiles are different.  The 

fuel to be used in an engine remains a primary design parameter.  Furthermore, extensive 

research has led to the conclusion that certain increases in pollutants such as NOx cannot be 

mitigated or controlled simply by changing a fuel property, but rather are “the result of a 

number of coupled mechanisms whose effects may tend to reinforce or cancel one another 

under different conditions, depending on specific combustion and fuel characteristics”(p.1) 

(Mueller, Boehman, & Martin, 2009,p. 1).  Potential contributions to differences in NOx 

emissions can relate to injection in terms of timing, delay, pressure, spray characteristics, and 

mixing.  Combustion stages, heat release, radiation from soot, and temperatures are also 

suspected to increase emissions (Sun, Caton, & Jacobs, 2010) 

  Major differences in fuels require adjusting the underlying engine technology 

(Jeschke, 2009).  Adjustments in heat management, fuel conditioning, fuel forwarding, and 

injection can improve overall efficiency and emissions. The primary difference between 

biodiesel and petroleum-based fuels is the oxygen content (Demirbas, 2009). The chemical 

properties are different and, consequently, the nature of combustion is also different (Guibet, 

1999). The presence of oxygen in the biodiesel molecules reduces the fuel’s compressibility 

(high bulk modulus) compared to petro-diesel, which is comprised primarily of hydrocarbons 

(Szybist, Kirby, & Boeham, 2005).  Fuel viscosity, which is affected by compressibility, can 
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artificially advance fuel injection timing (Sun et al., 2010). This may occur by minimizing 

system designed leakage due to higher fuel viscosity increasing fuel system pressure and 

consequently advancing injection timing.  Advanced injection timing changes time of 

combustion and combustion temperatures and can result in NOx formation.  This passive 

system response can affect controlled system responses from the engine as it attempts to 

change injection parameters in order to control noise, efficiency, and emissions.  Diesel 

engines vary in design, and consequently passive and controlled responses vary affecting 

emissions as shown in Table 2.8 (Sun et al., 2010).   

 

Table 2.8 
The Effects Of Property Difference Between Biodiesel or Its Blend and Petroleum Diesel On 
Engine Parameters. 

  

Difference Injection 
timing 

Injection 
pressure 

Fuel spray 
penetration 

Fuel spray 
angle 

Fuel spray 
atomization 

Ignition 
delay 

Heat 
release 

Combustion 
temperature 

Physical Properties 
         Liquid densitya + + + - - 

 
+ 

  Bulk modulus of 
compressibilityb + + + + 

     Speed of soundb + + + + 
     Liquid viscositya + + 

  
- - + 

  Surface tensiona + + 
 

+ 
 

- 
   Vapor pressurea - - 

   
- + 

  Volatilityc - 
    

- 
   Liquid specific heata - 

    
+ - 

  Vapor specific heata - 
    

+ - 
  Heat of vaporizationa + 

     
- 

  Chemical Properties 
         Chain lengthd + - 

    
- 

  Oxygen contentc + + 
     

+ + 
Aromatics contente - + 

     
+ + 

Sulfur contentf - 
      

+ 
 Saturation (iodine 

value)d - 
     

+ 
 

+ 
Cetane numberg + 

     
- 

  Heating valuec -               - 
NOTE: A plus sign in the “difference” column indicates biodiesel has a higher value of the listed property relative to 
petroleum diesel.  A plus sign in the remaining data columns indicates the corresponding difference in the property increase 
or advances the respective engine parameters.  A minus sign indicates a decrease or a retarding. 
NOTE: Table from “Oxides of nitrogen emissions from biodiesel-fuelled diesel engines: by J. Sun, J. A. Caton and T. J. 
Jacobs, Progress in Energy and Combustion Science,36, 677-695 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

Introduction 

The research methodology has been organized into five primary sections. These 

include a brief contextual overview of the trip to the Democratic Republic of Congo (DRC) 

in January, 2010, and a rationale for the variety of pulp processing methodologies used.  The 

methodologies are organized chronologically to make clear the progression from feedstock 

collection to final fuel testing.   The sections are organized in the following order: Field Data, 

Fruit Pulp Processing, Oil Pressing and Refining, Biodiesel Production and Polishing, 

Biodiesel Characterization Tests, and finally, Emission Tests.  Although the last two sections 

detail the primary focus of this research, the chronological progression of sections should 

help readers better understand the research methodology and the relevance of the results.  

 

Contextual Overview 

Traveling to the DRC 

Because Safou oil is not a readily traded commodity in the countries in which the 

fruit grows, acquiring oil for testing was complicated.  In May 2009, I was able to get initial 

samples of fruit pulp from the DRC to conduct preliminary tests regarding fruit pulp 

processing for oil, fuel production, and a preliminary fuel characterization.  Further research 

required a larger oil sample as well as field data and process data, which required traveling to 

the DRC.  This occurred during a two-week period from January 7 – January 21, 2010, made 

possible via a travel grant from Appalachian State University’s Office of Student Research.  
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During the short time field data was collected, approximately 250 kg of fruit was processed 

for export.  

My initial goal was to return with only oil, but that was not possible due to several 

complications.  First, fruit was not readily available in the Kinshasa area because the fruiting 

season was delayed. This meant fruit was sparse in the local markets and acquiring fruit 

required more time than allotted.  Secondly, even though the manual PITEBA  screw press 

did work, it required more time than was available to process all the fruit for the planned 

departure. Thirdly, processing the fruit, which included splitting the fruit in two, scooping 

out the central seed cluster, then chopping the fruit up before drying, was time consuming.  

These factors led to a focus on drying pulp for transport to the United States where it would 

then be run though a screw-press. All fruit samples had to be processed according to 

guidelines established by the United States Department of Agriculture so that it could pass 

the Customs inspection process on entry to the US.  The approved methodologies for 

processing included drying and canning the fruit. 

Standardizing the fruit pulp process would have been ideal; however, time constraints 

forced the use of all available means of preparing pulp for export.  This did introduce 

variables regarding processing, but the methods used were not expected to affect fatty acids 

at the molecular level.  Consequently, the biodiesel derived from the oil, regardless of 

processing method used, was still considered representative of the fruit’s potential as a fuel 

source.   

The majority of the fruit pulp was either dried using forced air electric dehydrators or 

roasted using standard convection ovens.  A smaller sample of wet pulp (14 jars) was 

pressure canned for later drying.  The dried fruit, weighing approximately 65 kg, was 
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vacuum-packed in Ziploc bags and heat-sealed and labeled.  Samples were packed in a trunk 

for shipment to the United States accompanied by a letter explaining the research and the 

sample’s adherence to USA regulations pertaining to the import of agricultural material.  

Once in the United States the dried fruit pulp was run through a screw press to harvest the 

oil.   

Data regarding oil yields and raw oil characteristics were collected prior to refining 

for biodiesel conversion.  Several preliminary conversion methods were used to identify a 

maximum biodiesel yield and included single-stage base-catalyzed transesterification 

reactions, a single-stage acid-catalyzed esterification reaction, as well as a two-stage acid 

then base catalyzed reaction. The two-stage acid then base-catalyzed reaction was used for 

the test fuel.   

The test fuel was polished in order to produce fuel that would potentially pass ASTM 

criteria prior to emissions testing.  This polished fuel was then used for fuel characterization 

and emissions tests.  Emission testing was performed under monitored outdoor conditions on 

an on-road test course.  

 

Field Data 

Harvesting Data 

Seven trees were harvested; however, tree morphology varied considerably as did the 

fruits’ readiness to be harvested.  Methods of harvesting were observed and documented, as 

were the number of people involved, the time required, and the amount of fruit harvested.   
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Market Data   

This data included price for fruit, quantity collected, and the state and quality of the 

fruit.  Fruit price varied but is representative of the low supply/high demand period of the 

Safou season.  The state of the fruit that is considered marketable as well as various 

morphologies in the fruit sold was noted.   

 

Fruit Pulp Processing 

Fruit Samples 

 Criteria for inclusion.  Fruit samples were included if they had achieved a level of 

maturity deemed by local markets as edible.  Three general types or morphologies of fruit 

were collected, but in all cases ripeness was determined by the predominance of dark bluish 

purple coloring on the fruit skin.  While a large portion of the fruit harvested was 

characterized as near ripe with residual pinkish spots on the skin, the majority of the fruit was 

fully ripe.  Furthermore, over 70% of the sample fruit was purchased at local markets, 

ensuring a sample representative of marketable fruit from local industry. 

Criteria for spoiled fruit.  Safou fruit is firm when ripe and softens rapidly as it 

spoils.  Any fruit that was soft and easily deformed was included in the spoiled sample.  Such 

fruits were culled each day from the unspoiled fruit and processed separately.   

 

Decorticating the Fruit 

 Ripe and near-ripe fruit.  Ripe and near-ripe fruit is firm. The fruit was split in two 

halves using a knife. The seed cluster was then removed with a spoon.  This left the fruit skin 
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and the membrane of the seed cluster still attached to the pulp.  This pulp then underwent 

drying or roasting. 

 Spoiled fruit.  Spoiled fruit pulp is soft and mushy and separates easily from the seed 

cluster. This separating was done manually.  These pulp samples did not include the outer 

membrane of the seed cluster and had less of the fruit’s outer skin.  This pulp then underwent 

drying, roasting, or canning. 

 

Fruit Drying 

Fresh and spoiled pulp that had been removed from fruit was placed in various forced 

air food dehydrators for 6-12 hours until the fruit pulp had lost a minimum of 60% of its 

original weight.  The pulp was dried until it would snap when attempting to bend it. The fruit 

was weighed prior to the drying process and then at various intervals thereafter until the total 

weight was less than 40% of the original minus the drying trays. Three food dehydrators 

were used including a 300-watt updraft Oster, a 300-watt updraft Magic Chef, and a 500-watt 

downdraft NESCO.  The stackable trays were rotated bottom to top whenever the trays were 

being individually weighed.  

Oven drying. 

Non-canned pulp. The oven drying used on fresh and spoiled pulp was more akin to 

roasting and was only used on the pulp that had not been canned.  Fruit pulp was weighed 

prior to being placed in the oven and then was removed when it had been reduced to less than 

40% of its original weight. Fruit pulp was placed in various ovens set at 250° F to 300° F. 

These temperatures were chosen to accelerate drying times while remaining well under the 

375° F threshold when triglycerides begin to volatize.  The oven door was propped open 
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about a half inch with the use of wooden spoons.  The pulp was stirred every half hour and 

rotated from top to bottom if several trays were in the oven at one time.  Total time in the 

oven was usually about 2.5 - 3 hours.  Pulp was considered ready for removal and cooling 

when shaking the tray back and forth revealed no pulp sticking to the tray and produced a dry 

brittle sound.  Both fresh fruit and spoiled fruit were dried for export in this manner.  

Canned pulp.  Canned pulp was oven dried once it arrived in the United States.  

Because there was no time constraint, oven temperature was set to 210° F.  The tray was 

weighed and recorded every half hour.  At the point when there was less than a gram of 

weight change over the course of an hour the pulp was removed from the oven, allowed to 

cool, and placed in a plastic bag for storage.   

 

Canning 

All pressure canning was done with glass jars with sealable lids.  The jars were 

canned at 15 psi, raising the temperature to approximately 250° F.  Once the pressure cooker 

was at pressure it was kept on heat for 30 minutes, after which the pressure cooker was 

rapidly cooled with water until pressure equalized with ambient pressure.  Jars were labeled 

and packed for  export.  Once the cans were imported to the United States samples were 

removed from the jars and oven dried.   

Before initial placement in the canning jars, fruit processed via this preparation 

method were subject to one of four pretreatments.  The methods described here were done to 

identify feasibility and simply to get as much undried fruit pulp ready for export to the 

United States.   
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 Pretreatment one.  

Whole fruit: fresh. Approximately 400 ml of whole fruits were placed in canning jars 

with 200 ml of water.  Samples were then canned.  

 Pretreatment two.  

Whole fruit: wilted. Whole fruits were placed in an oven at 200° F for approximately 

45 minutes to wilt.  These whole fruits were then placed in canning jars with no water.  

Samples were then canned.  

Pretreatment three.  

Fruit pulp: blanched. Whole fruits where blanched in boiling water for 5 minutes.  

The pulp was then scraped from the seed cluster by hand and packed in canning jars.  

Samples were then canned. 

Pretreatment four.   

Fruit pulp: spoiled. Spoiled fruit pulp was scraped from the seed cluster and packed 

in jars.  Samples were then canned. 

 

Establishing Zero Moisture Content 

 In order to establish a zero moisture content, samples that had been dried in the food 

dehydrators in the DRC where then placed in a muffle furnace for a minimum of 24 hours at 

212° F (100°C). 
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Safou Pressing and Oil Refining 

Pre-press Pulp Conditioning 

Dried fruit pulp was crumbled using a Kitchenaid® flourmill.  The grinder was set 

with a ¼ inch gap to crumble the dried pulp.  This pretreatment was done to help the flow of 

dried fruit through the hopper and into the press.  If pulp was not dry enough to crumble in 

the mill it was not dry enough to progress through the press.  

Oil Pressing 

The press.  Pressing was done using a Taby 20 bench-top extrusion screw-press 

made in Sweden. The Taby model expresses oil at its mid-point and extrudes meal pellets at 

the end opposite the hopper. This press has a heating collar that goes around the press 

housing where the extrusion dyes are inserted.  

Preparing the press.  The press was cleaned using mild soap and water and was 

allowed to thoroughly dry before pressing. Once assembled, the press was allowed to heat 

thoroughly with the heating collar before pulp was introduced into the press.   

Heat and moisture control.  The heating collar was regulated by a thermostat 

attached to the housing to maintain temperatures between 100-150° C.  When pulp was 

excessively dry and threatened to bind up the press, moisture was introduced to the 

feedstock.  The moisture was added by misting the feedstock while in a stainless steel 

Kitchen Aid mixing bowl. The feedstock was thoroughly mixed and tumbled before being 

placed in the hopper.  
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Labeling 

Labeling on samples included the original quantity of fresh pulp, how it was 

processed, as well as its final dry weight.  Glass vessels in which the oil was collected were 

labeled with the vessel’s dry weight (including the label), how it was previously processed, 

as well as its final oil sample weight.  Press-meal was returned to the original container in 

which the pulp had been processed and the final press-meal weight recorded.    

 

Oil and Press-meal Capture 

 The oil was captured in glass vessels.  These vessels were thoroughly cleaned with 

soap and water and then rinsed with pure acetone. The press-meal was collected into a glass 

bowl and then transferred to the jar or bag in which it had been imported.   

 

Oil Yield Calculations 

 Oil yield was determined by weight.  Complete calculations required corrections for 

pressing losses, moisture content, and foots (sediment).  

Press losses.  In the course of pressing a feedstock, a certain quantity of the feedstock 

does not progress through the press, as well as oil that remains on the press.  Material loss 

was calculated by subtracting the dirty press weight from the clean pre-pressing press weight.  

Unaccounted for weight was considered to be moisture losses due to evaporation. 

Single sample.  All parts for the press assembly were cleaned and weighed to 

establish a pre-press weight.  Sample material that failed to progress through the press was 

determined by placing the entire press housing on a scale and subtracting the pre-pressing 
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weight from the post-press weight. The weight of material that did not make it through the 

press was excluded from the yield calculations.   

Multiple sample runs.  When multiple samples were run in sequence, a starter 

sample was used to fill the press housing and excluded from any yield data.  Subsequent 

samples were introduced once the press had run for two minutes, beginning when meal 

ceased to progress through the extrusion dyes.  Oil vessels were changed and the press meal 

stored in its original container.    

Moisture content.  During the course of pressing moisture content is lost due to 

evaporation and must be accounted for in yield calculations.  The sum of the raw oil 

expressed and the press-cake will not equal the original feedstock sample weight.  Some 

moisture is contained in the oil while the majority remains in the press-cake and then 

evaporates. Moisture content is best determined before expression by desiccating a sample of 

the feedstock.  This percentage can then be applied to the equation, or the percent yield can 

be qualified with percent moisture of the starting feedstock.  This strategy was used in this 

study. 

 Foots/Settling.  Non-oil material was accounted for using a 100 ml graduated 

cylinder.  The raw oil vessels were place in an oven at 175º F for one hour.  The oil 

catchment vessel was then shaken for 1 minute in order to re-suspend sediment.  This 

suspension was then poured into a graduated cylinder. The graduated cylinder was then 

placed in the oven again for a minimum of four hours at 175º F, at which point the oven was 

turned off and the cylinders allowed to settle for a total of 24 hours.  The volume of the 

sediment was then subtracted from the original volume. 
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Oil Purifying 

After being captured in the glass vessels, the oil was placed in the oven for a 

minimum of four hours at 175° F.  This helped to settle particulate matter (foots) and further 

dry the oil. After the oil had been settled the oil was poured out into secondary vessels, 

taking care to avoid the transfer of foots.   

Several methods of filtering the oil were used. The oil was first filtered through a 

metal coffee filter, but this still allowed small particulates through.  Coffee filter paper was 

then used, which did an excellent job of purifying the oil but was slow.  The process was also 

only possible when the oil was warm, which required it to be heated in an oven at 175° F.   

A centrifuge proved to be the most effective method for removing particulates. The 

oil was heated to 175° F before being run through the centrifuge.  The centrifuge was a bowl 

design unit built by Simple Centrifuge and constructed of 6061-T6 aluminum for chemical 

resistance. Large light material that made it through the centrifuge was then removed using a 

bucket filter. Centrifuge oil was stored in a five-gallon bucket made of high-density 

polyethylene (HDPE).   The final oil sample produced for biodiesel production was 

approximately four gallons.  

 

Biodiesel Reactions and Fuel Polishing 

Titration 

Oil was titrated to determine how much free fatty acids were in the feedstock and 

how much catalyst would be needed for base-catalyzed reactions in order to complete the 

biodiesel reactions.  The titer used was a solution prepared by placing a gram of catalyst in a 

one liter volumetric flask to the one liter mark with distilled (de-ionized) water.  The titration 
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procedure required the sample, the titer solution, 91% pure isopropyl alcohol, and 

phenolphthalein as an indicator. Twenty-five milliliters of isopropyl alcohol was placed in a 

150 ml beaker along with one milliliter of sample and three drops of phenolphthalein.  The 

solution was agitated while the titer was slowly introduced until a pink color change was 

observed and maintained for 30 seconds.  The number of milliliters of titer required for the 

color change is indicative of the grams of catalyst required to neutralize a liter of feedstock.  

This procedure was repeated at least three times and the values averaged to arrive at the 

amount of base catalyst required to neutralize the free fatty acids.  

 

Biodiesel Reactions 

 Several reactions were bench top tested for the production of biodiesel.  These 

included two NaOH base-catalyzed reactions as well as a two-stage acid then base reaction. 

The reactions are summarized below. The oil feedstock, and not necessarily the 

transesterification process, affects the fuel composition.  Reaction methods are in general 

chosen primarily in terms of yield, consumables, process energy balance, and time.   

After several bench top tests, the two-stage test was chosen for fuel production 

because optimal yield appeared to be around 85% to 90%, indicating a near complete 

reaction.  However, up-scaling the smaller bench top reaction proved to be less successful 

when the final 12.33 liters of oil were reacted. 

Reaction one: NaOH base.  

Reactants.  These tests were done with 10 grams of raw centrifuged Safou oil.  

Transesterification was done using NaOH and methanol.  The molar ratio of methanol to oil 

was 6:1. NaOH catalyst was 5% by weight of methanol.   
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Reaction vessel.  Ingredients were placed in a three-necked round bottom flask.  A 

glass stirring apparatus was placed in the central neck.  A cork was placed on another neck 

while the last neck received a distillation column, virtually closing the system. 

Time and temperature.  The batch was heated to 50° C for one hour. 

Washing.  The reaction solution was rinsed out of the reaction vessel into a 125 ml 

separatory funnel using 30 ml of ethyl acetate, and then poured into a 125 ml separatory 

funnel.  30 ml of de-ionized water was placed in the separatory funnel with the reaction 

solution and agitated three times, relieving any pressure build-up between agitations.  The 

water and biodiesel were then allowed to separate out for a minimum of 10 minutes.  The 

water was then drained.  The wash procedure was repeated three times.   

Post-wash purifying.  Washed biodiesel/ethyl acetate solution was dried with the 

addition of magnesium sulfate (MgSO4).  The dried solution was then filtered through filter 

paper to remove the magnesium sulfate.  The final step was to evaporate the ethyl acetate 

using a rotating evaporator.  Biodiesel was then placed in a glass vial for storage.  

Reaction two: NaOH base.  

 Reactants.  These tests were done with 150 ml of gravity-settled Safou oil.  The 

transesterification was done with 5.5 ml of sodium methylate and 37.5 ml of methanol.  This 

is equivalent to a 6:1 molar ratio of methanol to oil and NaOH catalyst of 5% by weight of 

methanol.  

Reaction vessel.  Ingredients were placed in a 500 ml Erlenmeyer flask and placed on 

a hot plate with a magnetic stir bar.  A plastic funnel was placed in the neck of the 

Erlenmeyer flask to reduce methanol escape.  A glass thermometer was inserted to monitor 

temperature.  
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Time and temperature.  The batch was heated to 50° C for one hour and the glycerin 

was allowed to settle out for 8 hours. 

Washing.  After settling, the biodiesel fraction was decanted out into a 500 ml 

separatory funnel.  400 ml of tap water was placed in the separatory funnel with the reaction 

solution and agitated three times, relieving any pressure build-up between agitations.  The 

water and biodiesel were then allowed to separate out for a minimum of 10 minutes.  The 

water was then drained.  The wash procedure was repeated until rinse water was mostly clear 

with only slight haze. 

Post-wash purifying.  Washed biodiesel was then de-methylated and dried by placing 

it in a 250ml beaker and raising the temperature to 100°C for 10 minutes while being stirred.   

Reaction three: two-stage acid-base reaction.  Reaction three was a two-stage 

reaction. The first stage, an acid-catalyzed esterification reaction, was followed by a second 

stage base-catalyzed transesterification reaction.  

Stage 1: reactants.  150 ml of centrifuged and filtered oil was mixed with 8% by 

volume of methanol.  Sulfuric acid (98% pure H2SO4) was added at a ratio of 1ml per liter of 

oil.  

Stage 1: reaction vessel.  The reactants were placed in a 500 ml Erlenmeyer flask.  A 

funnel was placed in the neck of the flask to reduce any methanol escape and a thermometer 

was inserted to monitor temperature.  The flask was then placed on a hot plate with magnetic 

stir bar.  

Stage 1: time and temperature.  The solution was then held at 36° C for one hour 

while being stirred.  The solution was then stirred for another hour and the temperature 
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allowed to decrease to room temperature. The acid reacted vessel was then allowed to settle 

for 8 hours. 

Stage 2: reactants.  Methanol and 30% concentrate sodium methylate were added to 

the reaction vessel.  The total methanol in the reaction, including the fraction in the sodium 

methylate, totaled 14%.  The total percentage by volume of stage-one and stage-two 

methanol then totaled 22%.   

Stage 2: reaction vessel.  The reaction vessel remained the same as in stage one.   

Stage 2: time and temperature.  The solution was then reacted for 1 hour at 50° F 

while being constantly stirred.  It was then allowed to settle for eight hours.  

Washing.  After settling, the biodiesel fraction was decanted into a 500 ml separatory 

funnel.  400 ml of tap water was place in the separatory funnel with the reaction solution and 

agitated three times, relieving any pressure build-up between agitations.  The water and 

biodiesel were then allowed to separate out for a minimum of 10 minutes.  The water was 

then drained.  The wash procedure was repeated until rinse water was mostly clear with only 

slight haze. 

Drying and de-methylating.  The fuel was stirred while the temperature was raised to 

60º C and maintained for 10 minutes after boiling ceased.   

Test fuel reaction methodology.  Test fuel was produced following the third 

reaction, using the two-stage reaction.  The raw Safou oil was titrated and determined to have 

a considerably high free fatty acid (FFA) concentration.  Rather than neutralize the FFAs and 

lose them in the glycerin the fuel yield was increased by doing a two-stage reaction including 

acid-catalyzed esterification followed by base-catalyzed transesterification.  
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Stage 1: reactants.  986 ml methanol (8% by volume) was added to 12.33 L of raw 

centrifuged and filtered Safou oil.  While the methanol and oil were being stirred, 12 ml of 

sulfuric acid (98% pure H2SO4) was added.  

Stage 1: reaction vessel.  The reactants were placed in a five-gallon bucket made of 

HDPE.  A mixing rod was threaded through the bucket lid to a corded drill.  The drill was 

fixed in place by a vise and a variable voltage dial was used to control the speed of the drill 

for mixing.   

Stage 1: time and temperature.  The reactants were mixed for 1 hour while being 

held at 36° C using a thermometer and bucket heater.  After the first hour the bucket heater 

was removed and the reactants mixed for an additional hour.  The solution was allowed to 

settle for more than eight hours.  

Stage 2: reactants.  2.08 L of methanol was then mixed with 0.483 ml of sodium 

methylate in a five-gallon bucket.  This mixture was then added to the stage one reactants, 

but only after they were moved to a different reaction vessel.  After the addition of the stage 

two reactants, a quantity of solution was drained into the bucket that had the stage two 

reactants to rinse and pour back in the stage two reactor.  

Stage 2: reaction vessel.  The reactants from the stage one reaction were placed in a 

50 gallon HPDE graduated reaction vessel.  The vessel was raised up so that a five-gallon 

bucket could easily be placed under it.  The corded drill and variable speed apparatus were 

installed as well as the bucket heater and thermometer. 

Stage 2: time and temperature.  The temperature in the reaction vessel was raised to 

55° C and contents were mixed for two hours.  The reactants were then allowed to settle for 

over 24 hours. 
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Washing.  After draining the glycerin fraction the fuel was then washed with a fine 

mister and the water drained.  Fifteen gallons of water were used for the washing process. 

De-methylating and drying.  Once the water was drained the bucket heater was used 

to raise the fuel temperature to 60° C for 10 minutes to de-methylate the fuel.  The fuel was 

then allowed to settle for 24 hours in order to allow available water to precipitate out.   

Fuel polishing.  

Purolite.  The mostly dry and de-methylated fuel was then run four times through a 

column of Purolite ion exchange resin.  Water content was still at 2400 ppm when the 

maximum water content can be 2400 ppm.   

 Magnesol.  After several tests showed that the fuel was still not ASTM certifiable 

after the Purolite treatment, a 3% by weight quantity of Magnesol (magnesium silicate) was 

added to the biodiesel.  The fuel and Magnasol was agitated for 10 minutes and then allowed 

to settle for at least 24 hours before being filtered.  

 Filtering.  After settling, fuel was vacuum filtered.  A filter with a rubber gasket was 

placed in the throat of an Erlenmeyer flask, which also had a nipple on the collar to pull a 

vacuum.  Line was then run from the Erlenmeyer flask to a ten-gallon carboy through a 

double-holed cork.  Another line then exited the carboy via the second hole in the cork and 

went to the dry vacuum pump.  A Number 1 qualitative filter paper was used in the filtering 

funnel.  Once fuel was placed in the filter funnel a vacuum of -15psi was maintained during 

filtering.  The filtered fuel was collected in the 500 ml Erlenmeyer flask. When the flask was 

full, the vacuum was released and the funnel removed in order to empty the filter fuel into the 

final storage container.   
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Test Fuel Storage.  After filtration, fuel was stored in a standard red two-gallon 

plastic gas can. 

 

Oil And Fuel Characterization 

Energy Content 

 Calorimetry tests were conducted using a Parr oxygen bomb calorimeter.  

Temperature change data was collected using native software.  Standard procedures outlined 

in the Parr instruction manual were followed.  The heat of combustion was calculated from 

the change in the water temperature; however, the rise in temperature had to be corrected for 

wire combustion and acid production.  The energy released in the bomb by the element that 

lights the reaction was subtracted from the change in temperature recorded.  Furthermore, the 

production of sulfuric acid during combustion was actually endothermic so the energy 

consumed from this reaction had to be back-calculated.  This calculation was derived by 

collecting the condensation on the inside of the oxygen bomb, which was saturated with acid.  

To determine this, a small piece of pH paper was used.  If the paper indicated the presence of 

acid it was necessary to determine the quantity of acid and what kind of acid was present.  

The acidic condensate was rinsed out of the oxygen bomb with a small amount of de-ionized 

water.  The acidic rinse water was then titrated, followed by a series of chemical reactions 

that precipitated out specific acid fractions to determine how much of an acid was generated 

during combustion of the bomb.  The procedure followed is one outlined in the Parr Oxygen 

Bomb instruction manual.   
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Fuel Characterization Tests 

Hydrogen nuclear mass resonance.  Oil and fuel composition was determined using 

HNMR.  Samples were placed in HNMR test tubes and suspended in deuterium chloroform 

(CDCl3).  This test exposes molecules to a magnetic field and bombards the sample with 

electromagnetic pulses.  Based on the mass and hydrogen placement in the molecules, the 

compounds resonate at the atomic level, emitting energy at certain frequencies.  The 

molecular structure can be determined based on the points of resonance.   

Gas chromatography / mass spectrometry (GC/MS).  Fuel samples were placed in 

the GC/MS device.  This test was able to identify the primary chemical compounds in the 

fuel with a high degree of accuracy. The methodology for the biodiesel test conducted 

requires the vaporization of the fuel at 250° C prior to its entrance into the column.  For the 

methodology used the column began at 160°C and the temperature was increased at a rate of 

8° C per minute until a maximum temperature of 250° C was reached and held for 1 minute. 

The sample molecules are carried through the column with helium.  Molecules progress 

through the column at varying rates, arriving at the column end at different times.  Arrival 

time coupled with the mass spectrometry provides an accurate result for molecular make up 

of the sample. 

Lubricity.  Samples were placed in an ASTM certified high frequency reciprocating 

rig (HFRR).  A small polished metal disc (lower sample) was fixed in place of a small 

receptacle.  When calibrating, the receptacle was filled with  standard kerosene and no fuel 

sample.  When testing, a fuel sample was added to the kerosene.  A pristine metal ball (upper 

sample) was fixed to a reciprocating arm that moves back and forth at 60Hz.  The arm was 

then lowered into the test sample solution where the upper ball and lower disc made contact. 
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A 200 gram weight was then attached to the reciprocating arm, providing a measured and 

constant downward force.  The device was housed in a cabinet with a constant humidity and 

temperature.  The point of contact where lower sample meets upper sample completes a 

circuit.  The friction coefficient is then calculated using electrical resistance.  The lubricity 

tests were 45-minutes long, during which the friction coefficient and temperature generated 

were recorded.  At the termination of the test the ball (upper sample) was removed from the 

reciprocating arm and placed in a calibrated microscope attached to a computer.  The area of 

the wear scar was then calculated using the wear scar image and processed with native 

software.  The size of the wear scar was compared to other test samples to characterize the 

lubricity of the test sample.  

Cloud and pour points.  The cloud point of a fuel is determined by exposing a 

sample of fuel to gradually lower temperatures.  Fuel is warmed or heated to the point where 

it is fluid and clear.  The sample or samples are then gradually exposed to lower and lower 

temperatures until the fuel becomes cloudy.  This test was conducted on fuel samples with a 

thermometer and ice bath.  A fuel sample was continually stirred while the temperature was 

slowly lowered.  The test was conducted three times. 

Sandy Brae water test.  The Sandy Brae water test is accurate down to 50 ppm  ±20 

ppm.  This test measures pressure produced in a sealed container when water in a sample 

reacts with calcium hydride to produce gas.  The fuel sample and the calcium were placed in 

separate chambers inside the vessel.  30 ml of fuel sample was placed in one chamber with 

10 ml of reagent.  Calcium hydride was placed in the other chamber.  Once sealed, the vessel 

was shaken to mix the sample solution with the calcium hydride.  Water reacts with the 
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calcium hydride to produce hydrogen gas. The resulting pressure correlates to the ppm of 

water in the sample fuel.  

 

Emissions Test Methodology 

Emissions Vehicle and Instrumentation 

Emissions were generated by combusting the Safou biodiesel in a 2006 VW Jetta 

TDI.  The emissions data was collected post-catalytic converter with a Sensors Inc. Semtech-

DS portable emissions measurement system (PEMS). The emissions unit is capable of 

measuring carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide 

(NO2), and total hydrocarbons(THC).   

 

Emissions Data Collection  

Data collection included gas concentrations for CO, CO2, NO, NO2, and THC.  

Vehicle data regarding speed, engine rpm, load, and ambient temperature and humidity were 

collected as well.  All this data was collected, time stamped, and stored in the DS unit’s 

removable SD card.    

Pre-test procedures.  The pre-emissions testing procedures included cleaning the 

fuel delivery system, placement of the test fuel in the tank and delivery system, and 

calibration of the emissions testing equipment.   

Clean the tank and delivery system.  The auxiliary fuel tank was emptied and wiped 

down with absorbent towels.  The delivery system was evacuated of fuel using compressed 

air and the filters were replaced with new filters.   
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Filling the fuel line. Fuel was placed in the auxiliary fuel tank and the fuel line to the 

engine was removed.  The key was turned to pre-ignition, turning the auxiliary fuel pump on 

and filling the lines with sample fuel.  Once the line was filled with sample fuel, the line was 

reconnected to the engine fuel inlet.  

Emissions equipment calibration. Equipment was calibrated prior to each test with 

gases of known quantity.  This was done to confirm that the various analytical benches in the 

Semtech-DS were reading accurately across a range of gas concentrations.  A pre-test 

calibration was done to set and confirm the unit’s accuracy, and a post-test zero and span 

were done to confirm that the unit was reading accurately during the test.  First the 

equipment was zeroed for CO, CO2, NO, NO2, and THC using ambient air. Then high ppm 

CO, CO2, NO, NO2, and THC gases were read, followed by an audit or mid-value ppm 

sequence of CO, CO2, NO, NO2, and THC.   

Road test procedures. 

Test route. A test course was chosen on Highway 421 east of Boone, North Carolina, 

between the intersection of new 421 and old 421 and the intersection of 421 and 221 (see 

Figure 4.7 for a map of the actual route).  The length of the route was approximately five 

miles one way and presented several grade changes and, consequently, resulted in various 

loads for the engine. 

Test Sequence. The Semtech-DS unit was calibrated with standard gases.  Fuel was 

placed in the auxiliary tank following the methodology mentioned above. The vehicle was 

calibrated and prepared at Katherine Harper Hall and driven to the test course using petro 

diesel.  One mile prior to the test course, the fuel delivery was switched to auxiliary fuel 

delivery, allowing for evacuation and stabilization of the delivery system with the auxiliary 
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test fuel.  The test vehicle was held at a constant speed of 55 mph with cruise control and 

braking. 

 

Data Analysis Procedures 

Data was collected by software native to the test equipment when possible.  Data was 

otherwise recorded in two lab notebooks and then transferred to Excel for analysis and graph 

generation (Jaenicke, Franzel, & Boland, 1995).  

 

Safou Data 

 Data regarding Safou fruit, processing, pressing yields, fuel production, calorimeter 

tests, fuel production, and yields were recorded in one of two lab notebooks.  Data was 

transferred to Excel spreadsheets to aid in processing and generation of graphs.  

 

Calorimeter Data 

 Calorimeter data was collected in a notebook and then processed using Maple 13 

based software in order to calculate temperature change. This data was then corrected using 

the methods described in an earlier section, and data analysis was completed in Excel.  

 

Emissions Post-test Data Processing 

Data was uploaded from the Semtech-DS unit as an .XML with Semtech PC 

software.  This data was post-processed using the Semtech PC software and outputted as a 

.CSV file which could be opened with Excel.  Data from various tests fuels were then 
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compared and graphs generated using Megatron software written by fellow graduate student 

Eric Urban.   
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CHAPTER 4 

RESEARCH FINDINGS AND RESULTS 

 

Introduction 

The research findings are organized into three main sections: Fruit and Oil data,  Fuel 

Characteristics data, and Emissions data.  The Fruit and Oil section addresses all of the steps 

required from harvesting of the fruit through drying and pressing for oil, and includes a 

section detailing the energy requirements for Safou oil production. The Fuel Characteristics 

section details the composition of Safou biodiesel and analyzes its fuel characteristics in 

relation to ASTM specifications. Finally, the Emissions data section describes the results of 

the emissions tests conducted, comparing Safou emissions to those from soy biodiesel and 

petro diesel. 

 

Fruit and Oil  

 This section includes the data collected during my visit to the DRC in January 2010 

for the purpose of harvesting Safou.  As is pointed out in the limitations of the study section 

this data set is small, so a generalized conclusion cannot be derived from it.  However, there 

is sufficient information to place Safou harvesting in context and to provide some insights 

into its relevance as an energy crop.     

 

Harvesting  

 Safou fruit was harvested from nine trees with varying physical characteristics.  Fruit 

was harvested on the grounds of  the Centre Évangélique de Coopération (CECO) campus in 
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Kimpese.  Students at the CECO school were asked to participate in the harvesting of fruit. 

Students are typically discouraged by the groundskeepers from picking fruit from the trees, 

but this was an opportunity for them to pick the fruit for this research with the added bonus 

of getting some sought-after fruit.   The grounds have several dozen mature trees ranging 

from 3 to 25 meters in height.  As mentioned previously, the fruiting season was late so the 

harvesting was limited to the trees that had ripe fruit and the smaller trees from which 

students were able to pick safely.  The fruit was harvested on January 15, 2010 between 

10:30 am and 2:00 pm.  During that time nine trees yielded 75.5 kilograms of ripe and near-

ripe fruit. In general, one person went up the tree and picked fruit by hand, if possible, but 

more frequently a stick with a hook at the end was used to dislodge the fruit.  Fruit was 

allowed to drop to the ground with little care taken to avoid bruising.  The first tree that was 

approached was laden with fruit and yet had lost much of its foliage.  Three male students 

were able to climb this tree at the same time.  It was relatively low to the ground and yielded 

~40 kilograms of fruit in a half hour of picking time. 

Fruit sample inclusion criteria. 

 Ripe fruit.  Fruit was considered usable for our sample if it was considered ripe 

enough to eat.  Within this “ripe enough to eat” category the fruit was sorted into near-ripe 

and ripe fruit based on the extent of purple pigment evident on the fruit.  Fruit with 95-100% 

purple was considered ripe and anything between 80%-95% was considered near-ripe. Of the 

~250 kgs of fruit collected for the sample, approximately 50 kg was near-ripe.       

Spoiled fruit.  Fruit was collected in Kimpese, placed in used onion bags, and 

transported by car to the campus of The American School of Kinshasa (TASOK) for 

processing.  After transport to TASOK, at the beginning and end of each day spoiled fruit 
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was culled from fruit that had not yet spoiled.  Spoiled fruit was any fruit that had begun to 

go soft, was easy to deform, and had an outer skin that was easily broken. This spoiled fruit 

was processed separately.   

Fruit characteristics.  A sample of 27 fruits were cut in half, the seeds removed, and 

the seed cluster membrane separated from the pulp.  The three parts were then weighed using 

a triple-beam balance with accuracy to the tenth of a gram. The results in Table 4.1 

summarize the average weights of 25 fruits and their constituent parts. Two fruits that varied 

considerably from the other 25 fruits were removed from the data set.  The results are found 

in Table 4.1. 

 

Table 4.1  
Comparison of  Whole Fruit, Pulp, Seed Cluster, and 
Seed Membrane Based on Percentage of Total Weight 
 

Fruit Pulp Seed 
Cluster 

Seed 
Membrane 

100.0% 75.6% 23.8% 0.7% 
±0.04 ±0.05 ±0.03 ±0.1 

 

Fruit Processing 

 Fruit processing was not a primary focus of this research but observations of what the 

process could do to the fruit pulp were conducted and the implications for oil extraction were 

examined.  This information is pertinent regarding future development of Safou as a crop for 

oil extraction.  The processes summarized below are meant primarily to present how the pulp 

was processed in order to harvest the oil.  Energy inputs as they pertained to processing the 

oil for this study were documented where possible, and several obstacles to processing Safou 

for oil extraction were indentified in terms of energy inputs required.  The primary goal of 
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this section is not to identify and quantify best methods for processing, but to inform how oil 

for this research was attained and what may need to be improved upon for future viability of 

Safou as an energy crop.   

 Decorticating the fruit. 

 Ripe fruit.  Fruit, including the seed cluster, was cut in two.  Each half of the seed 

cluster was scraped out using a spoon.  The halves were then sliced using knives and 

mandolins into pieces between 1/16th inch and 1/4 inch to expedite drying.  A processing 

time trial was undertaken with three people and 60 kg of fruit.  It took three people 4.5 hours 

to decorticate and chop 60 kg in preparation for drying.  The result of the methods employed 

for this test resulted in an hourly rate of 4.44 kg of fresh fruit per individual.  

 Spoiled fruit. Spoiled fruit included fruit that had lost the integrity of the outer pulp.  

Pulp was easily scraped from the central seed cluster using one’s fingers or a spoon.  The soft 

and mushy pulp was then spread out on dehydrator trays or placed in oven tins for drying.  

No pulp removal time trials were undertaken; however, it was apparent to those who had 

done the 60 kg of the unspoiled fruit that dealing with each fruit required less time, 

particularly because there was no chopping involved prior to drying.   

 Pulp-seed water separation test. 

 Ripe fruit. This test included splitting a fruit in half and, without removing the central 

seed, chopping both halves into 1/4” strips across the fruit.  The chopped pieces of fruit were 

then tumbled in a jar to help separate pulp from seed.  The seed and pulp pieces were then 

poured in a glass with water in it.  The ripe fruit that retained its integrity would float along 

with the outer membrane of the seed cluster.  The seeds would sink.  This process could be 

incorporated for large-scale separation of fruit pulp after being mechanically chopped.  
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Spoiled fruit. This test included taking the spoiled fruit and simply placing it in the bucket 

and agitating the water.  The spoiled fruit would sink while the seed cluster with its 

uncompromised membrane would float.  This method of pulp removal would only be useful 

if enzymatic processing, mentioned previously in Chapter 2, is productive in water.  

 

Fruit Drying 

 Dehydrators.  Fruit was dried in preparation for pressing.  Initial drying was done 

with dehydrators to establish a target end point based on a percentage of the fruit’s starting 

weight.  Dehydrator trays were weighed on a balance accurate to a tenth of a gram. Each was 

labeled with a number and its tare weight. Fruit pulp was then placed on each tray in equal 

quantities. The dehydrator used for this test was a 350-watt Oster brand dehydrator. The trays 

were stacked sequentially with tray one on the bottom.  The bottom tray was then removed 

and placed on the top after each weighing, in order to promote a more even drying.  This was 

done because the dehydrator used for this test had an updraft design and the bottom tray 

would dry faster than trays above it.    Figure 4.2 shows how the Oster trays began at a 

common weight and also shows that weight change differed based on the bottom-to-top 

rotation.  Bottom trays lost more weight relative to other trays except when no more weight 

loss was possible.  Figure 4.3 shows the average weight of the trays at the five points with a 

trend line suggesting the path of the drying curve.  Actual drying curves for this material 

would require more evenly spaced data points.  Figure 4.3 is only meant to demonstrate what 

that drying curve might look like.  It is interesting to note that the Onesco dehydrator had a 

downdraft design and even though the trays were rotated bottom to top the difference in tray 

weight was less, suggesting a more even drying. Several drying tests were conducted out to 
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17 hours and the dry weight appeared to stabilize between 30-34% of the starting wet weight.   

This percent wet weight was the targeted range to determine when pulp had been sufficiently 

dried in the dehydrators or in conventional ovens.  Dehydrator temperature ranged between 

130-155° F, depending on the model and settings.  Temperatures for conventional kitchen 

ovens ranged from 250-300° F, and the majority of pulp was processed in conventional 

kitchen ovens below 250°F.  

 

 
Figure 4.1. Percent weight loss for four Oster dehydrator trays being rotated from bottom to 
top after each weighing.  
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Figure 4.2. Average of trays from Figure 4.1 with a trend line used to help describe the 
progression of moisture removal.  

 

Oven drying.  Chopped fruit pulp was placed in baking tins and placed in 

conventional kitchen ovens. Temperatures were set at 250° F and the oven doors propped 

open with the handle of a wooden spoon to allow hot moist air to escape and cool air in. 

Oven thermometers in various ovens showed temperatures ranging from 250°F to as low as 

220°F.  Trays were stirred and rotated every 30 minutes.  Drying was considered done when 

the pulp was brittle and when weighing the dried pulp confirmed that more than 62-64% of 

the starting weight had been removed.  During cooling pulp lost as much as 1-2% of its 

weight, culminating in a range of total wet weight removed of 63-66%.  

Energy for drying.  Three dehydrators were used for the dehydrating process.  These 

included an Oster®, a Magic Chef®, and an Onesco®.  Each dehydrator varied in terms of 

power, number of trays, and updraft or downdraft capabilities. Table 4.2 shows primary 

characteristics of each model.   
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Table 4.2  
Dehydrator Specifications 

 
Model Wattage Trays Forced 

Draft 
Oster® 350 4 Up 

Magic Chef® 250 5 Up 
Onesco® 500 4 Down 

 

The listed power and time required to reach terminal drying weight was used to 

calculate energy required per gram of fruit dried.  Data from the Oster®, Magic Chef®, and 

Onesco® dehydrators were collected.  Watt hours per kilogram dry pulp (Wh/kgdry) were as 

low as 6000 Wh/kgdry with a range between 6-7 kWh/kgdry.  A summary of the equation used 

for calculations is shown in Figure 4.3. Some tests exceeded this number due to the increased 

time allowed in the dehydrator in order to determine a terminal drying percentage.  This of 

course used more energy than was necessary to arrive at the drying point.  No energy data 

were collected for oven drying. 

 

Figure 4.3 Equation for drying energy consumption per gram of dried fruit pulp. 

 

Processing Effects on Fatty Acid Content 

 Dehydrator and oven-dried pulp.  Dehydrator temperature ranged between 130-

155° F, depending on the model and settings.  Temperatures for conventional ovens ranged 

from 250-300° F.  Titrations of the oil showed that oil that had been extracted from 

dehydrated pulp was below 1 gKOH/liter, while oil that had been roasted titrated in excess of 5 
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gKOH/liter.  Lower drying temperatures are ideal for preserving quality of oil and perhaps in 

terms of energy use.  However, no data was collected to confirm oven energy consumption in 

order to compare the two drying methods.  

 Pressure-canned pulp.  Wet pulp and fruit were pressure-canned at 250° F and later 

dried in the United States in a conventional oven set to 210° F with the oven door cracked.  

Oil extracted from this pulp also titrated below 1gKOH/liter. 

 

Pulp Pressing 

The press.  The press used for oil expression was a Taby 20® with a maximum power 

rating of 600 watts.  Due to varying speed and an unrated heating collar set to maintain a 

temperature range, a Watts-up? Pro® meter was used to collect energy data during press 

operation.   

Press and heated-collar loads.  Figure 4.4 shows the press load including time prior 

to pulp being pressed as well as cool-down time. The square segments found before and after 

the pressing represent the load from the heated collar.  This load also explains the sudden 

surges in the overall load profile.   
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Figure 4.4 Screw-press load profile during the extraction of 8.245 kg of dried pulp. 

 

Pressing yields for raw oil.  Raw oil press yield was calculated by dividing raw oil 

weight by the initial dry pulp weight.  After settling, neat oil was decanted and proved to be 

88% of initial raw oil values.  Results for pressing and settling yields are summarized in 

Table 4.3.   

 
Table 4.3 
Screw Press  Efficiency Based on Dry Pulp Weight to Unsettled Oil Weight 

Dry Pulp  
(g) 

Press Cake  
(g) 

 Oil  
(g) 

Cake + Oil 
% Start Wt. 

Raw Oil  
% Dry Wt. 

Neat Oilc 

% Dry Wt. 

774 326 420 0.96 56 49 
775 358 496 1.10a 58 51 

1492 696 798 1.00 53 47 
572 256 306 0.98 54 48 
765 367 388 0.99 51 45 
921 422 493 0.99 54 48 
753 337 409 0.99 55 48 
700 327 364 0.99 53 47 
729 366 375 1.02b 51 45 
764 349 395 0.97 53 47 

Averages 

824.5 380.4 444.4 1.00 54 47 
a,b This over unity is indicative of samples that required moisture added during pressing. 
c This value was calculated as 88% of Raw Oil, a value established from several settling samples.  
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Oil settling.  In order to get a number for neat oil extracted, raw oil samples were 

heated to 175° F and allowed to settle for more than eight hours.  They were then agitated for 

a minute to suspend all precipitates and a sample poured into a 100 ml graduated cylinder.  

The cylinder was then placed in an oven at 175° F for more than 15 hours.  The precipitates, 

or “foots,” were recorded in ml.  Results are found in Table 4.4.  The majority of oil used for 

the test fuel had an average of 12 ml of foots, and this value is used for overall yield data.  It 

is interesting to note that dehydrated spoiled fruit had the lowest value of sediment and near 

clarity was achieved in less than half an hour.  Non-spoiled pulp oil settled clear overnight, 

but oven-roasted pulp that had experienced excessive temperatures (>300° F) still had a 

substantial amount of pulp suspended in the oil.   

Process heat and acid values.  Five oil samples were titrated over the course of this 

research.   The samples shown in Table 4.4 are organized by titration values in the far right 

column.  The test fuel was a mixture of all oil samples and was heated and centrifuged to 

produce neat oil.  It appears that drying heat in excess of 250° F appears to correlate with 

higher titration values.   Neat oil heated to 205° F does not necessarily cause a breakdown of 

triglycerides-producing  free fatty acids; however, oil in the pulp is in proximity to water and 

other pulp material which may increase the effect of temperature on oil acid values. 
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Energy for pressing.  

 Figure 4.5 shows the segment from Figure 4.3 in which pulp was being pressed.  The 

power load and total cumulative energy is indicated as well. This energy yield is specific to 

the Taby 20® and Safou pulp used for this study.   Energy requirements are calculated by 

dividing energy consumed by oil yield (i.e., Wh/[pulp weight · percent yield]).  In the 

example of Figure 4.4 the calculation would be 258 Wh ÷ (8.245 kg · 47%) = 67 Wh/kg.  

This press efficiency is higher than some reported industrial press efficiencies ranging 

between 36-41 Wh/kg (Okoye, Jiang, & Hui, 2008). 

Table 4.4 
Comparison of Oils in Terms of Pre-press Processing, Sediments, and Titration 
Values.  

Pulp 
State 

Pre-Pressing Drying 
Temp. 

(F) 

Percent 
(wet/bases) 

Foots 
 (%) 

Titration 
(gKOH/l) 

Ripe Canned/Dried 210 32-34 - < 0.2 

Ripe Oven Dried 200-250 32-34 12 0.02 < 3.01 

Spoiled Dehydrated 120-155 32-34 8 < 3.01 

Ripe Over roasted >300 32-34 31 > 5.5 

Ripe Dehydrated 120-155 32-34 23 - 

Variousa Mix 120-300 32-34 - 5.27 
a Represents the titration of the oil feedstock used for the test fuel which was a mixture of various oils. 
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Figure 4.5 Cumulative energy for the pressing of 8.245kg of dried pulp. 
 

Energy Densities 

 The energy density of Safou FAME, Safou oil, press-cake, and seed were determined 

using an oxygen bomb calorimeter.  Standard procedures for calibration and corrections for 

iron combustion and acid production were performed per the instructions of the Parr Oxygen 

Bomb Manual.  FAME and oil did not require corrections for endothermic acid reactions.  

Press-cake and seed experiments did test positive for acid creation.  Results are summarized 

in Table 4.5. 

Table 4.5 
Summary of the Energy Content of ‘Safou Oil, Press 
Cake, Seed, and Safou-derived FAME  

Sample Energy Unit 

FAME 20.632 kJ/g 

Oil 19.894 kJ/g 

Press-Cake  15.175 kJ/g 

Seed 11.587a kJ/g 
a Value was not corrected for acid production but titration results were less 
than press-cake values and acid corrections of 0.9 kJ/g. 
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Energy Calculation for Safou Oil Production 

  Energy needed for oil production was calculated by summing the total energy 

required for drying and pressing. The overview of the calculation used for pressing energy 

per kilogram of neat oil is shown below in Figure 4.5.  The average raw oil percent (54%) 

was corrected for the average percent of oil (88 ml/100 ml) that was neat when foots had 

settled. This established a 47 % neat oil pressing efficiency based on dry weights. This 

percent was multiplied by the total dry pulp weight pressed:  47% raw oil · 8.245kg dry pulp = 

3.875kg neat oil.  The energy required to press the oil was then divided by the weight of the 

neat oil.It was established previously that drying required 6000 Wh/kg .  Figure 4.6 

summarizes the equation for total energy required to produce a single kilogram of Safou oil.  

The methods used for this research resulted in a total energy requirement of 6060 Wh/kg:  

6000 Wh/kg + 67 Wh/kg = 6067 Wh/kg.  The ratio of process energy when compared to the 

energy density of the oil is 1.09:1.  This ratio is negative, which in terms of energy 

production of the oil alone would disqualify Safou as a biofuel feedstock.  Although this 

energy balance is unfavorable, energy values recorded for this research are not indicative of 

potential energy balance because of the processing methods used for this small sample.   A 

potential scenario is outlined in Chapter 5 using reported Wh/kg for drying and pressing.  

 

 

Figure 4.6  Equation for press energy consumption per gram of clean oil fruit pulp. 
 

 

Figure 4.7  Equation for total energy consumption per gram of clean oil fruit pulp. 
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Fuel Characteristics of Safou 

Safou Biodiesel Characteristics 

 Several biodiesel transesterification reactions were done in an effort to produce fatty 

acid methyl esters (FAME) from Safou oil.  Lab-scale reactions produced yields greater than 

80%, whereas larger-scale reactions—in particular the two-stage acid-base reactions for final 

fuel production—proved to be incomplete.  Bench-top testing showed potential test fuel 

reaction yields above 85% by volume, while the final fuel reaction resulted in a 50% yield. 

This reduction in yield is likely due to the methods used for the five-gallon reaction vessel as 

well as to temperature variations during reaction.  Furthermore, the use of NaOH created 

solid glycerin which, when heated and reacted with phosphoric acid to precipitate salts and 

glycerin, showed a 40% by volume FFA content.     

 

Safou Oil Feedstock Composition 

 High yield reactions were used to determine molar ratios of the raw oil.  Composition 

was determined after successful conversion to FAME with a GC/MS.  Several compositions 

of Safou oil have been reported from previous literature (see Table 2.2).  Table 4.6 shows the 

results from the GC/MS performed on this study’s samples of Safou biodiesel.  The first 

sample was produced from oil that had been extracted from pressure-canned and dried fruit 

pulp.  The second sample was fuel produced from a mixture of oil extracted from pulp that 

had been dehydrated as well as oven dried and was the oil used for fuel production.  The 

third sample was oil from spoiled fruit pulp that had been dehydrated.  

 



96 
 

 

Table 4.7 
Summary of ASTM 6571-09 Tests Performed on the Safou Fuel 
 

Property Method Limits Units Analysis Pass/Fail 

Flash Point (closed cup)  ASTM D 93 93  min. C° 149 Pass 

Kinematic Viscosity, 40 C  ASTM D 445  1.9 - 6.0 mm2/sec. 4.938 Pass 

Copper Strip Corrosion   ASTM D 130 No. 3 max.  1a Pass 

Cloud Point  ASTM D 2500  report C° 12.8 Report 

Acid Number  ASTM D 664  0.5  max mg KOH/g 1.262 Fail 

Free Glycerin  ASTM D 6584  0.02  max. % mass 0.0001 Pass 

Total Glycerin  ASTM D 6584 0.24  max. % mass 0.334 Fail 

Oxidation Stability   EN 14112  3 min. hours 2.59 Fail 

Lubricity, HFRR at 60°C ASTM D 6079 a 520  max. microns 434 Pass 

Moisture Karl Fischer  500  max ppm 814 Fail 
a Lubricity test was performed on SafouBD (Table 4.6) while all other tests were performed on Safou BD Fuel. 
 
 
 

Safou Fuel Analysis 

 Safou oil and fuel characterization is summarized in Table 4.7.  The table does not 

represent the entire battery of tests required for ASTM 6751-09 certification (see Table 2.7 

for a complete list of tests required for ASTM certification).  Analysis showed that Safou fuel 

produced for these tests did not pass all criteria in the ASTM specifications.  Actual results 

Table 4.6 
Carbon Chains Found in Safou-Derived Fatty Acid Methyl Esters With Varying Pre-Press Feedstock 
States and Transesterification Reactions 
 

Side Chain 
Double Bonds 

C-13 C-16 C-16 
(1) 

C-17 C-18 C-18 
(1) 

C-18 
(2) 

C-18 
(3) 

C-20 C-20 
(1) 

 SafouBD  0.24 35.59 0.46 0.27 - 35.53 24.90 2.14 0.42 0.33 

SafouTF - 43.41 - 0.21 - 15.07 32.88 - 0.29 0.28 

SafouSp  - 42.52 - - 3.39 17.48 35.05 - 0.25 0.26 
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are indicated in the Analysis column with a “pass” or “fail” rating.  Strictly speaking, the 

Safou test fuel cannot be termed ASTM-certified biodiesel; therefore, the more general term 

Test Fuel has been adopted. 

 

Emissions Test Results 

Course and Conditions 

 The course selected for this test was a segment of Highway 421 east of Boone, NC.   

Figure 4.7 gives an overview of the course and turnaround points.  Figure 4.8 shows course 

elevation changes.  Emissions tests were all performed on November 1, 2010.  Ambient 

temperature was 55° F and relative humidity was at 42%. The test for emissions was done in 

a sequence of Petro, Soy, Safou, Petro, Soy.  Soy and petro runs chronologically adjacent to 

the Safou run were used for emissions comparisons.  Course, run duration, vehicle speed, and 

ambient conditions were consistent between compared test runs with the assumption that the 

same amount of work was performed by each fuel.  

 
 Figure 4.8 Map of course used for emissions testing. 
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Figure 4.9 East-bound emissions course profile: Elevation in meters. 
 

Fuel Sample Change Procedure 

The auxiliary tank and fuel line, including the fuel cooling loop, were purged between 

test fuels.  Each fuel had a unique fuel filter that was changed after purging was complete.  

The tank was wiped clean with shop towels after each fuel run in preparation for the next 

fuel.  The auxiliary fuel pump was then turned on to fill the fuel line, including the cooling 

loop.  Fuel was allowed to flow through the line for several seconds to help flush the line. 

 

Emissions Data Collection Equipment 

Emissions data was collected using a Semtech-DS® portable emissions measurement 

system produced by Sensors, Inc.  The Semtech-DS has several gas analyzing benches 

including a flame ionization detector (FID) for total non-methane hydrocarbons (THC), a 

non-dispersive ultraviolet (NDUV) bench for NO and NO2, as well as a non-dispersive 

infrared (NDIR) bench for CO, CO2 and HC.  Benches were calibrated using ambient as the 
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zero.  Span (high ppm) and audit (low ppm) gases were used to calibrate the various gas 

analyzers over a range of concentrations.  Table 4.8 summarizes the accuracy of the 

Semtech-DS unit for testing emissions.  

Table 4.8 
Accuracy of Semtech-DS Analytical Benches 

 

Analyzer Bench Gas Range of 
Measurement Accuracy Resolution 2 Hour 

Drift 
FID THC 0 – 100 ppmC 2.0 % of reading or ±5ppmC 

whichever is greater 
0.1 ppmC ±5ppmC 

NDIR CO 0-8% ±3 % of reading or 50ppm, 
whichever is greater 

10 ppm ±50ppm 

CO2 0-20% 3 % of reading or ±0.1%, 
whichever is greater 

0.01% ±0.1% 

NDUV NO 0 to 3,000 ppm 
0 to 900 ppm 
0 to 300 ppm 

2 % of meas. or 2 % of pta 0.1 ppm ≤10ppm 

NO2 0 to 500 ppm 
0 to 300 ppm 
0 to 100 ppm 

2 % of meas. or 2 % of pta 0.1 ppm ≤10ppm 

 a “pt” refers to the overall flow-weighted mean value expected at the standard. “Meas” refers to the actual flow-weighted 
mean measured over any test interval. 
Note. Adapted from Semtech-DS User Manual by Sensors Inc, 2010,p. 230-231,  

  

 

Flow Calculation for Emissions Data 

 Due to a recent software upgrade to the Semtech-DS, certain defaults were reset 

including the selection for the flow meter. Consequently, exhaust flow had to be indirectly 

calculated for emissions data.  Calculations for the exhaust flow, which allow for a 

calculation of actual mass of emissions, were produced following the outline of the equations 

listed below.  This method assumes the conservation of mass where molecular mass of 

emissions will equal the molecular mass of air and fuel going into the cylinder.  Equation one 

addresses the molecular mass of the air going in and the second equation deals with the mass 

of fuel.  The third equation multiplies the sum of equations one and two by the instantaneous 
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gas concentrations recorded for that data point.  A fourth equation was required to covert g/s 

to g/mi with the use of data specific speeds. 

 
(1) 

 

 
(2) 

 
 

(3) 
 

 
 
 
 

A comparison of calculated data versus data collected with exhaust flow meter values 

showed an acceptable distribution for a comparison of fuels.  Figure 4.9 shows the 

distribution for total emissions from petroleum diesel on a day with similar conditions as that 

of the test data.   

  
Figure 4.10. The distribution percent difference between measured data and calculated data 
for petroleum fuel. 
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Figures 4.10-4.14 were generated with g/s data that was generated using the above 

equations.  In each pair the left graph is always petro versus Safou, while the right side is soy 

versus Safou.  These initial comparisons do show some structure in their characterizations of 

emissions from the different fuels.  For instance, in Figure 4.10 there is a sudden increase in 

CO2 for soy and Safou at 50% engine load.  This is clear from the stratified cloud and 

correlating gap in the main body of data points just below it.  While these figures are useful 

in doing initial comparisons, it became apparent that comparing fuels after binning data 

according to engine load would perhaps provide data sets for each fuel that would be more 

readily comparable.   Initially this comparison was done for grams per second data, as is 

shown in Figures 4.15-4.19.  The same method of binning data according to engine load was 

applied to calculated grams per mile data, where the analysis used g/s data  over the course of 

a mile.  These findings are shown in Chapter 5.    

 
Figure 4.11. CO2 emissions vs. engine load for petro and Safou and for soy and Safou 
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Figure 4.12. CO emissions vs. engine load for petro and Safou and for soy and Safou. 
 

 
Figure 4.13. THC emissions vs. engine load for petro and Safou and for soy and Safou. 
 

     

Figure 4.14. NO emissions vs. engine load for petro and Safou and for soy and Safou. 
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Figure 4.15. NO2 emissions vs. engine load for petro and Safou and for soy and Safou. 
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Figure 4.16.  CO2 (g/s) emissions from Safou vs. petro. 

 
Figure 4.17.  CO (g/s) emissions from Safou, soy, and petro. 
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Figure 4.18. THC (g/s) emissions from Safou, soy and petro. 
 

 
Figure 4.19.  NO (g/s) emissions profile comparing Safou , soy, and petro. 
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Figure 4.20.  NO2 (g/s) emissions profile comparing Safou , soy, and petro. 
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CHAPTER 5 
 

DISCUSSION AND CONCLUSIONS 
 

Introduction 

The primary objective of this work was to analyze Safou (Dacryodes edulis) in terms 

of the energy required to process its oil, and to characterize the biodiesel fuel potential of this 

oil feedstock.  Energy analysis took into consideration process inputs and energy used in 

production.  It also looked at the embodied energy of Safou oil and FAME produced, and 

investigated the potential of using production by-products such as seed and press-cake in 

terms of energy.  Characterization of Safou FAME as a biodiesel included pre-combustion 

tests stipulated by ASTM 6571-09 and post-combustion measurement of emissions generated 

by the fuel.   

 Safou is still in its infancy as a domesticated crop for large-scale production of the 

fruit for food, yet alone for use as an oil crop.  In light of the plant’s oil production potential, 

this exploratory analysis of the oil as a biofuel feedstock, and analysis of the energy inputs 

required to create biodiesel from the fruit, was undertaken.  In general, Safou has potential as 

a biofuel crop.  Several points are made in this Chapter that help to identify the potential of 

the oil in terms of process and energy balance.  More to the point, biodiesel production 

capacity from Safou appears to be favorable in terms of an energy balance, and the derived 

fuel appears to be comparable to soy biodiesel in terms of regulated emissions.   A discussion 

of these and other findings is organized sequentially below according to the research 

questions posed at the outset of this work, followed by more general conclusions.   
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Research Questions 

The following questions were posed by this research: 

RQ1: How much energy is embodied in Safou pulp, raw Safou oil, residual press-cake, and 

Fatty Acid Methyl Esters (FAME) biodiesel generated from the oil? 

RQ2: What are the characteristics of Safou oil extracted from fruit pulp that has spoiled and 

has become inedible? 

RQ3: What are the fuel characteristics (including molecular composition, lubricity, flash 

point, cloud-point and gel-point) of biodiesel (FAME) made from Safou oil?  

RQ4: What kind of emissions profile does FAME fuel derived from Safou generate when 

combusted in a 2006 Volkswagen Jetta TDI engine, and how does the profile compare 

to petro-diesel and soy biodiesel fuel run under similar conditions? 

 

Research Question 1  

Research question one addressed how much energy is embodied in Safou pulp, raw 

Safou oil, residual press-cake, and FAME biodiesel generated from the oil.  The findings for 

this question are summarized in Table 5.1 (an expanded version of Table 4.5), with fruit-

specific energy values.  Energy density of oil and oil production byproducts were essential to 

informing several calculations that are pertinent to the following research questions.  The use 

of the bomb calorimeter for this step is the most conventional method for determining energy 

density of a material.    
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Table 5.1 
Summary of the Energy Content of Safou Oil, Press 
Cake, Seed, and Safou derived FAME  

Sample Energy Unit 

FAME 20.632 kJ/g 

Oil 19.894 kJ/g 

Press-Cake  15.175 kJ/g 

Seed 11.587a kJ/g 

Average kJ /fruit 

Seed  82 kJ 

Pulp  272 kJ 

Total 352 kJ 
a Value was not corrected for acid production but titration results 
were less than press-cake values and acid corrections of 0.9kJ/g. 
 

 

Energy of harvesting.  Although Safou production has increased in western Africa 

and crop developments such as marcotting allow for the propagation of plants with select 

traits, harvest efficiency remains unclear.  Field data collected for this research was limited, 

but data collected for harvesting a tree considered on the large side for plantation applications 

showed that the collection of ~40kg of fruit in ~45 minutes by three people.  Considering the 

tree’s size and that the harvesters were neither trained nor working to maximize yield per 

labor hour, this number could be perceived as a minimal yield per time unit.  It can also be 

assumed that production scenarios for Safou under optimal conditions in controlled 

plantation settings would yield considerably more fruit per labor hour.  Given a similar 

plantation set-up as for oranges, an experienced harvester can fill six 40 kg boxes per hour 

and as many as nine in ideal conditions (Morton, 1987).   Assuming an average 300 grams 
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per orange, the total pick would be, at minimum, 800 fruit per hour.  If he same fruit pick per 

hour picking safou would result in 50 kg per labor hour.  Mechanization of crop harvest for 

oil production depends heavily on the end purpose of the fruit.  If immediate processing for 

oil was planned then damage to fruit due to mechanized harvesting could be negligible. 

Furthermore, life on the tree could be extended, which has been demonstrated to be 

advantageous since oil content increases with fruit maturity.  

Pulp processing and decorticating.  Processing Safou fruit by hand for drying is a 

labor-intensive endeavor requiring, for this study, an hour of labor to process less than 4.5 kg 

of fruit.  A mechanized or semi-mechanized system would be required to minimize this labor 

demand.  Not only is the process used in this study prohibitive in terms of energy balance and 

production cost, but personal experience and feedback from individuals who helped with 

pulp processing for this study suggested that people would not be willing to undertake such a 

labor-intensive process.  A method of slicing up fruit similar to a French fry press, or letting 

fruit spoil on purpose in order to separate the pulp in perforated tumblers, would need to be 

investigated.  Water separation techniques could be employed to float fresh pulp away from 

seed clusters or to separate spoiled pulp from floating seed clusters.   

Fruit pulp drying and pressing energy balance.  The methods used for drying and 

pressing Safou pulp for oil proved to require more energy (21,834 kJ/kg) than was embodied 

in the oil (19,894 kJ/kg).  Drying of fruit pulp proved to be the primary energy consumer 

with the methods employed for this research.  However, when compared to cited energy 

demands for drying and pressing, the energy balance could prove to be favorable.  The 

energy demands for a forced-air solar drier designed for operation in humid tropics were 

Safou is grown has been reported to require as little as 26Wh/kg (93.6 kJ/kg).  Energy 
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demand for screw presses has been reported to be as low as 36 Wh/kg of oil.  The ratio of the 

sum of these two energy demands 62 Wh/kg (223.2 kJ/kg) compared to the energy density of 

Safou oil is 1:89, or just over 1%.  Although these estimates do not include actual, measured 

energy demand and losses during processing, they do illustrate that it may be possible to 

achieve a significantly more favorable energy ratio in comparison to the energy balance 

resulting from methods used during this research. 

Process energy from seeds or press-cake. 

 Seeds.  The energy in dried seeds is sufficient to process the fruit’s needs for drying 

and pressing pulp.  Seed content of wet fruit is less than 25% based on wet weight.  A dry 

weight comparison per fruit oil yield shows that each fruit can produce approximately 9.6 g 

of neat oil, assuming yields of 47% (dry weight).  This would require 4.6 kJ of process 

energy per fruit (9.6 g x 0.223 kJ/g = 2.14 kJ).  If the seed content is 25% by weight and 10% 

of that is moisture, then on average each fruit would have 13.77 grams of dried seed or, in 

terms of energy, 151 kJ of energy per fruit.  If we were to assume that drying and pressing 

required for oil production does only require 0.223 kJ/g, then the seed content of Safou fruit 

could be used to provide the necessary energy.  Seeds have a conservative energy content of 

11 kJ/g and could provide sufficient energy for processing even if the heat and power 

conversion efficiency was as low as 4%.   Tests for general combustion gasification of the 

seeds would be necessary to confirm the possibility of this energy conversion for further 

development.  Moisture content of seeds in this study was found to be less than 20%, which 

is the upper limit for consistent combustion of biomass materials.   

 Press-cake.  Embodied energy content of press-cake was determined to be greater 

than 15 kJ/g.  As in the case of seeds, the energy content of this material could be applied for 



112 
 

process energy. However, the potential for press-cake to be used as a food additive may be 

financially more viable than direct energy conversion, but in the case of spoiled pulp, food 

applications may not be possible.   

Press energy example.  If a press was run with Safou biodiesel, how much oil could 

be produced?  Assuming a conservative estimate that the press energy demand was 100 

Wh/kg of oil produced, one liter of Safou biodiesel could produce 14.66 kg of Safou oil.  

This number was arrived at by calculating the energy content of Safou biodiesel and its 

application in a diesel engine driving a press.  See equations 1-4 for a summary of the 

calculations.   

(1) 

 

(2) 

 

(3) 

 

(4) 

 

 

Research Question 2  

Answering this question required investigation of the spoiled fruit pulp and its oil 

potential.  The question specifically inquired as to the characteristics of Safou oil extracted 

from fruit pulp that has spoiled and is inedible.  Spoiled fruit pulp appears to be salvageable, 

if not for human consumption, then at least for applications in cosmetics and biofuels.  
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Several GC/MS results were produced regarding the fuel produced from spoiled fruit, and its 

chemical composition was similar to that of the test fuel made from unspoiled fruit.  Figures 

5.3-5.4 provide an overview of the comparison between the test fuels made from ripe and 

from spoiled Safou derived FAME that was tested.  

 Reclaiming post-harvest losses.  Safou has enjoyed almost two decades of 

intentional inquiry into the crop’s potential for agroforestry systems in tropical regions where 

it is indigenous. The crop’s oil potential is simply one of its many characteristics that 

recommend it for incorporation into farming systems in tropical western Africa.  

Developments in the crop’s propagation to maximize yields and ease of fruit production have 

considerable implications for agricultural livelihoods.  The fruit crop’s limitations in terms of 

shelf life and the estimated 40-50% post harvest-losses still remain a problem in spite of 

some discoveries that have helped to minimize losses.  As identified by this research, spoiled 

fruit can be reclaimed for the production of oil.  The titration level of 3.01 gKOH per liter 

identified in Table 4.4 is acceptable for biodiesel feedstock. At what point the spoilage is 

detrimental to oil reclamation or limits its uses is undetermined.  Nevertheless,  oil that may 

not be salvageable for food purposes may retain its potential for fuel and cosmetic 

applications. As can be seen by comparing Figure 5.1 to Figure 5.2, the spoiled Safou pulp 

FAME is similar to the Safou test fuel, suggesting that the two are comparable as fuels.      
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Figure 5.1. GC of Safou test fuel. 

 
Figure 5.2. GC of spoiled pulp Safou FAME.  

 

Research Question 3  

This question required an investigation into the pre-combustion characteristics of the 

Safou fuel.  200 ml of test fuel was given to Jeremy Ferrell, Outreach and Production 

Manager for the Appalachian Biodiesel Research and Testing Facility, who was kind enough 

to run several ASTM-pertinent tests.  Safou test fuel did not pass all of the stringent ASTM 

specifications, but the tests that were performed provide a foundation for the oil’s potential as 

a fuel.  While failure to pass may be due to characteristics inherent to the feedstock, 
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complicating reactions due to human error during and after production were more likely the 

culprit.  Test batches that were successful using stir plates and glassware were not as 

successful when attempted at the five-gallon level.  Although reaction ingredients and molar 

ratios were maintained, the reaction vessel, method of agitation, and temperature were not 

consistent and are suspected to have affected the reaction. Considerable fuel polishing was 

performed, but these processes are hindered when incomplete or contaminated reactions 

occur prior to polishing.  ASTM tests revealed that triglycerides were present, indicative of 

post-reaction contamination because mono- and di-glycerides were absent.   In spite of 

failing to pass the strict ASTM standards for biodiesel the grade of fuel produced would 

likely be representative of fuel produced in developing nations where Safou is grown.  

Because of the fuel’s cloud point of 55° F it would recommended  primarily for use in 

tropical regions where the fruit is grown.  Figures 5.1 through 5.4 are results from GC tests 

done on the various test fuels as well as on the spoiled fruit pulp fuel. These figures show 

that petro diesel has a much larger concentration of molecules with lower individual 

molecular weights in comparison to the biodiesels. Soy has a lower concentration of the C:16 

molecule compared to Safou, as shown by the area under the peak above the six-minute 

mark.  Furthermore, the spoiled Safou FAME appears to be comparable to the Safou test fuel, 

suggesting that spoiled Safou pulp oil is relatively similar to the unspoiled Safou pulp oil that 

was converted to fuel.  
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Figure 5.3. GC of petro test fuel. 

 
Figure 5.4. GC of soy test fuel. 

 

Research Question 4 

  This question asked what kind of emissions profile Safou fuel generates when 

combusted in a 2006 Volkswagen Jetta TDI engine, and how that profile compares to petro-

diesel and soy biodiesel fuel run under similar conditions.  The comparison of the emissions 

between the various test fuels was hindered by the absence of exhaust flow meter (EFM) 

data.  Flow was back-calculated using several other engine parameters and data specific to 

the rate of fuel.  To verify this strategy, comparisons were performed on previous emissions 
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data sets that included EFM data and that had comparable testing conditions.  This 

comparison shows an acceptable distribution.  Although the emissions values are not 

absolute, they proved to be sufficient for a comparative analysis of Safou in relation to soy 

and petro diesel.  Initial findings indicate that, overall, Safou performs at a level equivalent to 

soy and petro diesel.  There are instances where Safou appears to perform somewhat better or 

worse than soy or petro diesel; however, Safou is not uniquely superior or inferior in a 

comprehensive comparison.  Further discussion is provided below.  

 Method of calculating emissions flow.  Emission data collected for Safou, soy, and 

petro was collected for comparison.  Unfortunately, the exhaust flow data was not measured 

and a flow calculation was required in order to compare the emissions. The calculation 

summarized below was applied to each data point, which was binned every second. This 

calculation compared total mass of emissions over time.  Equation 5 summarizes the primary 

units required for the equation, while Equation 6 includes constant values and the variables 

for RPM, kPa, and Temperature. Initial computation is in grams per second and then 

converted to kg/hr. 

(5) 

 

 Ve = Volumetric efficiency of the engine 
 Ed = Engine displacement in cc 
 Pressure = Manifold pressure 
 Temp (K)= Engine intake temperature, which is hotter than ambient.  
  

(6) 
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In order to validate this method a comparison of measured data (including EFM values) and 

calculated data for petro and soy was done.  A percent difference was generated using 

Equation 7.   

(7) 

 

A histogram was then generated for each fuel, as shown in Figures 5.5 and 5.6. The primary 

concentration of values was between -50 and zero, and the charts focused on this segment.  

As can be seen in Figure 5.5, the distribution of petro is left of zero with a primary peak 

centered around -7.  Figure 5.6 shows soy and the distribution is asymmetrical with a peak 

right at zero and a secondary peek well left of zero centered at -33.  At first this comparison 

appears to be significantly different; however, when the averages of the bins are compared 

there is a curious similarity. The average bin value of petro is 19, while the average value of 

soy is 18.  As varied as the distributions first appear, the fact that the averages of each fuel 

are approximately 5% different when compared. This implies a fundamental similarity 

despite the different histogram profiles.  When the averages of the difference were calculated 

prior to rounding, soy had an average of  -39.31 while petro had an average of -38.57. When 

comparing one fuel to the other this is a percent difference of less than one.  The implication 

of this comparison is that while the distribution is not alike for both fuels, a comparison 

between fuels with the calculated data has some merit. 
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    Figure 5.5. Percent difference of measured vs. calculated mass flow data for petro. 

 
    Figure 5.6.  Percent difference of measured vs. calculated mass flow data for soy. 

 

 Safou test fuel.  The Safou FAME produced for emissions testing was assessed for 

its compliance to ASTM standards for biodiesel.  The Safou fuel could not be termed Safou 

biodiesel in the strictest sense because it did not meet all the criteria in order to be certified.  

Therefore, for the purposes of this research, Safou fuel was labeled “Test Fuel.”  ASTM 
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results as indicated in Table 4.7 were indicative of incomplete reaction and/or contamination 

of the sample with raw oil.     

Emissions data.  Emission data was graphed against engine load because engine load 

appears to be directly or indirectly correlated with many variables that affect emissions.  For 

purposes of comparison, in this section emissions were converted to g/mi by including speed 

for each data point.  The basic equation is shown in Equation 8. 

(8) 

 

 General emissions overview. In all cases there was little statistically significant 

variability between fuels at engine loads below 30%. Error for this range was statistically 

insignificant. Error bars are represented by the vertical lines in the graphs.  Data points above 

80% engine load were limited so error was not minimized so comparisons for this range are 

limited, however there does seem to be some suggested trends that would require further 

testing and a more robust data set in order to do any meaningful comparison.  The range 

between 30% engine load and 80% has a sufficient data set with variation and statistically 

insignificant error. The following comparisons are based on grams per mile and focus 

primarily on the 30-80% engine load range.  

 Comparison of CO2 between fuels .  Figure 5.7 shows CO2 for all three fuels. As can 

be seen, the fuels are comparable at engine loads 20% and below.  Variation between fuels 

begins around 30% engine load, most likely due to gear shifting and RPM variations.  No 

single fuel appears to outperform any other fuel; however, within the range of 30-80% engine 

load data for Safou is more consistently the lowest value or shares the lowest value 34 of 50 



121 
 

times, compared to petro’s 20 out of 50 data points or soy’s 11 of 50 points.  Sharing a 

lowest point was determined by overlap of points or their error bars.  This would suggest that 

Safou produces less CO2 in this engine load range than do the other fuels.    

 
Figure 5.7.  CO2 g/mi emissions for Safou, soy, and petro over 0-80% engine loads 
  

 Comparison of CO between fuels. A comparison of CO across fuels shows that petro 

diesel uniquely holds or shares the lowest value of 68 of the 80 data points, excluding the two 

zero values for petro at engine loads 29 and 31. Soy shares six lowest values, while Safou 

shares or holds 19 lowest values.   
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Figure 5.8.  CO g/mi emissions for Safou, soy, and petro over 0-80% engine loads. 

 

Comparison of THC between fuels. Total hydrocarbons are indicative of incomplete 

combustion both in the cylinder and in the catalytic converter.  During increased engine load 

the engine is injecting more fuel than can be completely combusted.  As RPM increases for a 

given gear ratio, latency of fuel in the cylinder decreases, resulting in incomplete 

combustion.  At upshift, latency increases for the increased fuel mass, decreasing THC 

production.  When increased work is needed at higher percent engine load and shifting up 

would stall the engine, RPMs are increased again, decreasing latency of fuel in the 

combustion conditions and producing more THC. This explains the general undulation of the 

THC data as engine load increases (Figure 5.9). However, THC count is also affected by the 

catalytic converter. Due to the surface area and the proximity of the various gases going 

through the catalytic converter, catalytic efficiency increases with increased saturation of 

target gases, up to a point.  This may be due to molecular proximity of gases to catalytic 

elements being reduced. Increased saturation of gases is also correlated to increased flow, 

which reduces overall latency in the converter, decreasing conversion of target gases.  
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Consequently, it would be expected that as THC increases in emissions then target gases 

such as CO2 would decrease.  Pre-converter emissions may be leveled out in comparison 

between gases. System design injects additional fuel into certain cylinders in order to 

increase hydrocarbon count without changing engine speed.  This excess fuel or 

hydrocarbons are intended to saturate the catalytic converter in order to drive the catalytic 

process, producing more CO2, NO2, and water.   

 
Figure 5.9.  CO g/mi emissions for Safou, soy, and petro over 0-80% engine loads. 

 

  It is curious that the 40-60% engine load area shows petroleum increasing in THC 

values in comparison to Safou, while the CO comparison shows petro with the least 

production of CO.  This points to the fact that the catalytic converter is designed to be more 

efficient with the range of hydrocarbons in petro diesel fuel.  Safou may perform better in 

terms of THC because the carbon chains present in the fuel are larger than those present in 

petro and soy, but this may not be ideal for catalytic design.   Although there was potential 

drift in the THC readings, the fact that Safou was recorded between both fuels does suggest a 
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notable difference, but would require further investigation to confirm why there is a 

difference.    

   Comparison of NO between fuels.  NO production for all three fuels appears to be 

very similar up to 25% engine load, at which point emissions data begin to stratify with the 

greatest variation in readings for soy.  Safou appears to compare closely to petroleum.  If the 

THC values reported above are accurate there appears to be a correlation between lower THC 

and lower NO production, suggesting a potential conversion correlation between Safou THC 

and NO reduction.  Looking at the 40-60% load range for NO, Safou appears to most 

consistently have the lowest values.  Compared to the same engine load range for THC there 

appears to be a potential correlation.    

 

 
Figure 5.10.  NO g/mi emissions for Safou, soy and petro over 0-80% engine loads. 
 

 Comparison of NO2 between fuels. Generally, NO2 production for the three test fuels 

is similar.  The trend for petroleum appears to gravitate towards the lower values, with 
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stratification or notable increase for soy and Safou between 38-50% engine load and again at 

60-70% engine load. When this is compared to the NO data in Figure 5.9, Safou values 

appear to be generally lower than petro.  This disparity may be due to several reasons.  Safou 

may initially produce more NO2 during combustion, or it may experience increased 

efficiency of the catalytic converter in this range.  More likely it is a combination of the two.  

The upshot is that across engine loads NO2 production is at times comparable while at other 

times varyies sufficiently to be notable.   

 

 
Figure 5.11.  NO2 g/mi emissions for Safou, soy and petro over 0-80% engine loads. 
 

General Discussion 

Emissions.  It appears that Safou emissions are comparable to other fuels such as soy 

and petroleum diesel.  These results show the Safou test fuel was not necessarily better or 

worse compared to soy and petro, but there appear to be variations during certain operating 

conditions, including at different engine loads.  The data set compiled for this research 

appears to be sufficiently robust to suggest that, although there are differences in emissions 
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between Safou biodiesel and petro, Safou is not decidedly better or necessarily worse than 

petro diesel in terms of controlled emissions production.  It does, however, suggest different 

system responses at particular points of operation.  The broader implication is that biodiesel 

fuel in general is being evaluated under a system that is designed to optimize emissions 

reductions for petroleum diesel.   

Engine design and emissions.  The Jetta TDI Engine system is designed to use 

petroleum diesel.  Although some emissions may be affected by passive system design (e.g., 

the catalytic converter), other effects may be due to active system responses such as variation 

in injection timing and in when the emissions gas return valve is open.   The impetus to 

change the underlying system design of the engine to accommodate biodiesel is lacking 

because the fuel is closely comparable to petroleum diesel and the market demand is 

primarily for blending biodiesel with petro diesel.  However, if biodiesel use becomes more 

prominent—as has been the case with ethanol, which has promoted flex fuel design—diesel 

engine systems in light-duty vehicles may become akin to flex-diesel and able to 

accommodate fuel differences by modifying combustion variables such as injection timing, 

air-fuel ratio, and temperature.   

Safou as biofuel.  According to the findings of this research,  Safou has potential as a 

biofuel feedstock.  Although the scope of the energy balance assessment is limited, the 

potential energy balance is favorable if strategies such as providing energy from seed were 

adopted.  The prospect of reclaiming post-harvest losses via oil extraction for fuel by using 

fruit too spoiled for food use  is possible. This strategy is also potentially favorable in terms 

of energy balance because of the greater ease in separating the pulp.  Emissions generated by 

Safou are not uniquely better or worse than those of petro diesel or biodiesel despite some 
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variation in emissions performance.  Although the Safou industry is in its infancy, the 

potential to develop it further by providing necessary energy for food production is a 

possibility.  Obstacles to Safou being used as an oil crop are being investigated and over the 

last decade substantial progress has been made.  It is possible that in the coming years the 

Safou industry could expand and fuel its own expansion.    

 

Suggestions for Further Research 

Safou Biodiesel 

 This research has established that Safou has potential as a biofuel in terms of energy 

balance as well emissions profile.  The limited data set would need to be further expanded in 

order to establish the fuel’s strengths and weaknesses and under what operating conditions.  

It would be ideal to produce ASTM-certified Safou biodiesel and compare the fuel to 

petroleum derived diesel as well as biodiesels from a variety of feedstocks.  

 

Catalytic Converter Design 

 The catalytic converter may have varying effects on the final emissions of a fuel.  It 

would be very informative to compare pre-catalytic and post-catalytic emissions.  The 

implications for passive catalytic design or active system responses such as EGR and rich 

combustion conditions meant to fuel the catalytic process should be explored specifically for 

biodiesel.  
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Spoiled Safou Fruit 

 The potential to reclaim post-harvest losses due to fruit spoilage should be further 

explored.  The point at which oil extraction from spoiled pulp is optimal needs to be 

investigated further and placed in the larger context of competing needs from the food, 

cosmetics, and fuel industries.  

 

Energy Conversion of Safou Seed and Press-cake 

 Determining whether seed or press-cake can be used to provide the energy for 

processing needs further investigation.  Despite the fact that the energy required for 

processing is available in the seeds and press-cake, avenues of converting this energy need to 

be further investigated.  Thermal decomposition such as direct combustion or gasification 

should also be investigated.  

 

Safou and Anaerobic Digestion 

 While thermal conversion of seed and press-cake may be possible, the option of 

anaerobic digestion of the seed, press-cake, and even the pulp should be investigated.  The 

potential to feed anaerobic digesters with spoiled fruit for biogas production should also be 

investigated.  Residual effluent of Safou biogas production could have further potential as a 

crop fertilizer, but this is presently unproven.  
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	Chapter 1
	INTRODUCTION
	Limitations of the Study
	Safou Fruit Sample
	Fruit origin and morphology.  There is a large variety of Safou fruits in western Africa.  Unlike other fruits, such as apples, where there are specific cultivars with names and consistent fruit morphology, the nomenclature for Safou varieties is not ...
	Sample validity.  Ideally, a significant sample size of a single fruit type within a uniform stage of ripeness would have been available for the study; however, fruit availability was limited.  The three fruit sizes and the stages of ripeness were ind...
	Fruit ripeness.  Due to a delayed fruiting season attributed to diminished rains during the months preceding January 2010, when this sample was collected, a sufficient quantity of uniformly and ideally ripe fruit was not available.  The only criterion...
	Fruit oil yield.  The amount of oil contained in the Safou fruit is dependent on the variety, the growing conditions, and the fruit’s stage of maturation.  As a rule there is a greater percentage of oil in the pulp the longer the fruit remains attache...
	Fruit Harvesting Data
	Data collected for harvesting represented a very small sample and were limited to six trees of varying sizes.  A Safou tree can grow to be more than 25 meters tall, making it difficult and dangerous to collect fruit.  Two of the trees from which fruit...
	Process and Preparation of Oil and Fruit Pulp for Export
	Oil processing.  A quantity of oil was extracted in the DRC by drying the fruit and pressing out the oil using a manual press. This raw oil was placed in canning jars with loose lids, which were then placed in a bath of boiling water for 10 minutes.  ...
	Fruit pulp processing.  Three methods were employed to prepare fruit pulp for export. The first method included removing the firm pulp from the seed center, chopping the pulp, and drying it in electric forced-air dehumidifiers.  The dehumidifiers oper...
	Energy Analysis and Considerations
	Energy is a focus of this research only in terms of the energy embodied in the oil, the press-cake, the seeds, and the biodiesel. Energy life cycle for the process and production of fuel is not a primary focus of this research.  That said, some prelim...
	Fuel Characterization
	The pre-combustion characterization for the oil and fuel did not include the complete battery of tests required for American Society of Testing and Materials (ASTM) certification. However, partial ASTM characterization was possible at Appalachian Sta...
	Fuel Sample
	The fuel sample used for the emissions data only included two gallons of polished fuel.  Although this was not a substantial quantity it was sufficient to identify obvious fuel characteristics and emissions.
	Engine Type
	The emissions data generated for this study were collected from the operation of a 2006 VW Jetta TDI.  This vehicle is not representative of all diesel engines or vehicle types.  The Jetta engine has four in-line cylinders with a total volume of 1,896...
	Catalytic Converter
	The 2006 VW Jetta TDI is equipped with a three-way catalytic converter designed toconvert NO2 to N2 and O2 while converting CO and hydrocarbons to CO2 and water.
	Definition of Terms
	GC/MS –Gas Chromatography-Mass Spectrometry. This uses gas-liquid chromatography and mass spectrometry to identify differing substances at the molecular level within a test sample.
	H-NMR – Hydrogen-Nuclear Magnetic Resonance. This is used to investigate molecular structure by exposing hydrogen atoms to magnetic fields and electromagnetic impulses.  How the molecule resonates indicates location of hydrogen and consequently molecu...
	Gel point/Pour point – The temperature at which a fuel ceases to flow and congeals.
	Cloud Point– The temperature at which a fuel ceases to be clear and molecules begin to clump together.
	FAME– Fatty Acid Methyl Ester: Biodiesel made with methanol.
	FAEE– Fatty Acid Ethyl Ester: Biodiesel made with ethanol.
	TDI– Turbo Direct Injection: This refers to a diesel engine that has a turbo charger compressing air that is going into the combustion chamber, but also indicates how the fuel is being delivered into the combustion chamber.
	CO – Carbon Monoxide: In reference to combustion, presence of this gas is indicative of an incomplete combustion.
	CO2– Carbon Dioxide: This gas is indicative of a complete combustion where a single carbon has been completely oxidized and is molecularly stable.
	NO– Nitric Oxide: Can be indicative of nitrogen in the fuel but more commonly is a byproduct of combustion heat and resulting oxidization of atmospheric nitrogen in the cylinder.
	NO2 -Nitrogen Dioxide: A byproduct of in-cylinder combustion following NO formation, but also is produced in the exhaust stream by further oxidization of NO.
	THC—Total Hydrocarbons: Total non-methane hydrocarbons indicative of incomplete combustion in cylinder.
	Significance of the Study
	Characterizing the potential of Safou oil for fuel purposes has several implications.  Communities in West African countries are significantly dependent on financial gain from agrarian enterprise.  A crop that experiences a post-harvest loss in excess...
	Furthermore, the development of crops with indigenous appeal can strengthen the agricultural and energy sectors of struggling economies.  Identifying the oil’s fuel qualities, whether favorable or not, will help to inform future crop and industry deve...
	The potential of another oil crop that requires less land than traditional crops such as soy or palm would be favorable in terms of land use.  The fruit’s general appeal as a food has established a market that is growing.  The crop’s intrinsic charact...
	CHAPTER 2
	REVIEW OF LITERATURE
	Safou as an Energy Crop
	Though mentioned as a possible feedstock for biodiesel, no research has been done to identify Safou oil’s fuel characteristics as a straight vegetable oil (SVO), a fatty acid ethyl ester (FAEE), or a fatty acid methyl ester (FAME).  There are obstacle...
	The impetus for this research was founded on the fact that Safou crop losses en route to markets have been estimated as high as 50% (Silou et al., 2006)  Methods of mitigating post-harvest loss have been investigated with some success.  However, devel...
	Biodiesel in a Global Context
	Growth Trajectory
	Energy is vital for socio-economic development (Demirbas, 2009).  Social and economic dynamics are global, as are the problems associated with securing energy and food supplies.  Vegetable oil crops, both edible and non-edible, are being investigated ...
	/Figure 2.1 A forecast for biofuels : Projected biofuel energy production (left) and projected
	land use for biofuels (right).
	Note. Adapted from “Energy Technology Perspectives 2008, Figure 9.12” by the International Energy Agency, p. 338.
	Global Land Use
	Only 2% of global arable land is dedicated to bio-energy crops while 30% of readily arable land is unused (El Bassam, 2010).  The earth’s land area is estimated to be 13 billion hectares.  Total rain-fed arable cropland is estimated at 4 billion hecta...
	Energy Inputs for Agricultural Production in Developed and Developing Nations
	Studies were conducted in the mid 1990s comparing fossil energy inputs per hour of agricultural work.  Comparisons included fossil energy that went into the production of any operation as well as into its operation.  Developed nations used about 85 MJ...
	Food Versus Fuel
	The complexity of the food versus fuel issue is dependent on “changing diets, urbanization, expanding populations, flawed trade policies, extreme weather conditions and speculation” (p.12) (El Bassam, 2010).  Biofuel production is essentially an exten...
	Industrial scale agricultural practices have literally changed the landscape, as in the case of oil palm in Malaysia and Indonesia. However, this development was not driven by global fuel demand but by the food, soap, and cosmetic industries well befo...
	Cautions and Response to Biodiesel Production
	The climate within which biofuels are being developed must be viewed with a measure of caution due to the complexity of the social, economic, and environmental factors that are involved. Problems endemic in modern industrial agriculture should not be ...
	Biomass Energy and Energy Conversion
	Today’s energy supply comes from three types of sources: fissile, fossil, and renewable (Demirbas, 2009).  Nuclear power and fossil resources are finite, while renewable energy resources are dependent in one way or another on energy captured from the...
	Photosynthesis
	In terms of energy, photosynthesis is a process that converts solar energy into biomass.  The sun delivers a relatively constant supply of solar energy to the earth.  This has been measured above the earth’s atmosphere to be 1.367 kW/m2.  The earth’s...
	Limiting Factors Specific to Photosynthesis
	Photosynthesis is limited to the range of light between 400 nm and 700 nm—essentially the visible spectrum.  This range of light represents 43% of total solar radiation.  Of this 43%, a maximum of 15.8% can be absorbed; this is the upper limit for abs...
	Limiting Factors Pertaining to Agricultural Crop Yields
	Light is a primary factor for plant growth but production is frequently limited to growing seasons and contingent on other environmental factors such as soil quality and water availability.  Plant genetics and physical structure of a crop have a lot t...
	Biomass Energy Conversion Methods and Efficiencies
	Energy from biomass can be converted to usable energy by three methods. The primary method used is direct combust of biomass to produce heat, electricity, or a combination of the two.  The second method is to produce gaseous fuels such as methane, hyd...
	Safou (Dacryodes edulis)

	Formal Domestication of Safou
	Safou has been a fixture in western and central African agriculture for some time.  In 1992, the first tropical tree domestication conference held in Edinburgh indentified certain criteria for identifying trees with potential characteristics that woul...
	Range of Dacryodes edulis
	Dacryodes edulis belongs to the family Burseraceae and is indigenous to West Africa.  It is found from Sierra Leone down to Angola, and to the east as far as Uganda (El Bassam, 1998).  The genus Dacryodes contains 34 species, two found in tropical Sou...
	Safou Fruit
	The fruit is widely eaten throughout the Gulf of Guinea region and has myriad names, the most common being Safou (pronounced să-fu) in Francophone areas, and African pear or plum in Anglophone areas.  Another common name is the butter fruit, which is...
	Market & Crop Developments
	The fruit’s popularity as a food has helped develop national markets and international markets as far away as Europe (Awono, Ndoye, Schreckenberg, Tabuna, & Isseri, 2002).  However, quantifying the value of the entire market has proven difficult, exce...
	Oil Production Capacity
	Dacryodes edulis has only recently been selected for domestication and cultivation.  Assuming the present yield capacity of trees Safou can produce as much oil as the cultivated oil palm which has enjoyed a century of selective breeding (National Res...
	Oil Appearance
	Raw Safou oil has an olive green color, is semi-solid at room temperature (Dzondo-Gadet, Nzikou, Matouba, Etoumongo, Linder, & Desobry, 2005), and frequently separates into two layers: a liquid upper and a semi-solid bottom layer (Obasi & Okolie, 1993...
	Characteristics of Pulp and Seed Oil
	Fatty acid composition.  Biodiesel is formed by attaching an alcohol to fatty acids.  The nature of the feedstock’s fatty acid composition has direct bearing on the characteristics of the fuel made.  Safou pulp and seed oil are made up primarily of th...
	Melting points.  Safou’s primary melting point is at 14.5  C, more than 10 C lower than coconut and palm oil, which have major melting points at 25 C.  This would suggest that Safou oil has a lower cloud and gel point than biodiesel made from coconut ...
	Viscosity and saponification values of Safou oil.  The ratio of saturated fatty acids to unsaturated fatty acids in Safou pulp oil is reported as being close to 1:1, which is similar to palm oil.  This value places it between fluid oils at R=4 and veg...
	Seed oil.  The seed oil characteristics are similar to, but not entirely like, the pulp oil characteristics.  This has bearing on the efficiency of oil extraction and consequently on the energy balance of biodiesel made from the Safou fruit. As with t...
	Processing Safou for Oil Extraction
	Drying.  Oil has been extracted from the pulp and kernel of Safou in several ways. For most oil expression methods drying the fruit to less than 10% water weight prior to extraction was essential, with the use of enzymes as mentioned offering the exce...
	Chemical oil extraction.  Chemical extraction was successful with the use of hexane after the pulp or kernel was dried and crushed (Dzondo-Gadet, Nzikou, Etoumongo, Linder, & Desobry, 2005).  Hexane achieved a near total extraction.  In other instance...
	Enzymatic oil extraction.  The use of enzymes has also been tested in the extraction of oil from Safou pulp and seeds. This method does not require drying.  Using the enzyme Viscozyme L. achieved extraction rates no less than 2% below percentages achi...
	Mechanical oil expression.  The screw press method of oil removal was done by drying the fruit pulp and seed and using a screw-press.  This method is not as efficient as chemical extraction processes but is less expensive and requires less infrastruct...
	Nutritional Value of Safou Fruit
	Safou makes a positive contribution to the lives of both producers and consumers.  The Safou trade significantly impacts the livelihood of both farmers and merchants, financially as well as nutritionally. The fruits nutritional make up is summarized i...
	Genetic Obstacles to Propagation of Safou
	Morphological obstacles.  Dacryodes edulis demonstrates a high tree-to-tree variation in fruit traits, including size, shape, skin and pulp color, pulp thickness, taste, and shelf life. This complicates matching product to market desires. Selection of...
	Gender selection in propagation.  The species is composed of male and female trees but can display hermaphroditic traits.  It is also suspected of selecting gender during maturation. The natural ratio of male to female trees tends to be 1:1, and tree ...
	Propagation techniques.  Aerial layering, a process where clones are created by cultivating branches off of adult plants, has shown to result in trees that retain a donor or parent tree’s favorable traits. Using this method, planted clones can begin f...
	Harvesting Methods and Socio-Economic Considerations
	There appears to be a human-gender-specific division of the labor associated with Safou fruit harvesting. Taking fruit from the tree, depending on its height, is accomplished by climbing the tree or knocking it down with a pole, work that is largely d...

	Harvesting Considerations
	Timing of harvest.  Timing for the harvesting of fruit crops is subject to two criteria: The fruit’s physiological maturity and its commercial maturity.  Physiological maturity is the progression of the fruit’s developmental stages that culminate in t...
	Period of harvest.  Safou is found above and below the equator, and consequently the fruiting season is almost year-round.  The fruits begin to ripen in early January and can be available until late May in the D.R. Congo; in Cameroon, Safou fruit begi...
	Harvest challenges.  Harvesting Safou poses some challenges.  The determination for the correct time to pick a fruit is difficult to gauge, particularly when large quantities are being harvested.  Within horticultural practice, the most reliable metho...
	Mechanization of harvest.  Many methods of mechanized and semi-mechanized harvesting have been developed for various fruit tree crops.  Harvesting equipment has also been successfully developed for fruits that are easily bruised.  The efficiency of me...
	Post-harvest treatments.  After a fruit is picked it is still a living organism with biochemical physiology that affects quality, flavor, and texture (Poincelot, 2004). With Safou fruit, maturation and decay is primarily attributed to the action of pe...
	Safou Processing Considerations
	End-Use Requirements
	The method of processing Safou in order to remove the pulp is dependent on the purpose for the pulp and, in the case of oil extraction, the quality required for a given market.  For food pastes and spreads only the pulp is useful, which requires separ...
	Physical Properties
	Mechanization considerations.  The pulp of Safou can be firm enough to require mechanical separation of pulp from the seeds’ cluster, or soft enough that the pulp can be washed off.  Mechanized de-pulpers, decorticators, and de-stoners are market-read...
	Water separation.  When Safou pulp is still firm it floats, but the seed center will sink if the membrane around the cluster is sufficiently ruptured for trapped air to escape.  On the other hand, fruit pulp that is sufficiently softened will come off...
	Drying Safou Fruit Pulp
	Introduction
	The method of oil removal used for the samples in this research required the drying of Safou fruit pulp.  Understanding the drying process was essential to this research for three reasons. First, the drying process has bearing on the quality of the oi...
	Drying Background
	The goal of fruit drying is to remove water; this is most commonly done with heat and convective air (Jayaraman & Das Gupta, 1992). Fruit samples are placed in an oven at temperatures between 70-105  C and monitored for weight change. A zero point is ...
	Food Drying Kinetics
	Moving water out as efficiently as possible with minimal energy requires managing several changing interactions. Moisture diffusivity, thermal conductivity, density, specific heat, inter-phase heat, and mass transfer coefficients are some of the prima...
	Free and bound moisture.  Water in fruit is considered to be either “free” or “bound” moisture.  Free water resides in the interstitial spaces and pores and is held by physical forces related to surface tension. This moisture content behaves similarly...
	Initial drying dynamics.  During drying the free water evacuates the cells, making its way through the cellular capillaries to the surface.  Initially this causes structural shrinkage that ceases before drying is complete (Brennan, Butters, Cowell, & ...
	Terminal drying dynamics.  Once the structural shrinkage ceases, the drying of the remaining water fraction is affected more by the physical properties of the vegetable material.  These properties include fiber orientation and solid thermal properties...
	Drying Curves
	While initial and terminal drying dynamics address the general progression toward drying, the entire process as represented with a fruit-drying curve is frequently separated into three phases. The first phase is that of the loosely-bonded water evapor...
	Air Temperature and Velocity
	The transfer of moisture out of a material is primarily dependent on air temperature and secondarily on airflow.  Air temperature is an influence during the entire process.  Air velocity has great effect while moisture content is high but does little...
	Vegetable Oils and Pressing
	Overview
	Vegetable oils are lipids, which are contained in the cell structure of plant matter.  Compromising the cellular structure and liberating the oils is done by orchestrating the mechanical as well as the chemical effects of pressure, temperature, durat...
	Cold Press
	By eliminating the chemical action of heat, cold pressing does not chemically alter  the feedstock.  The temperature threshold for cold pressing is debated, but 90  F is at the bottom of the debated range. Cold-pressed oil is generally considered mor...

	Extraction
	Heat, digestion, solvents, and enzymes are all extractive techniques that chemically affect the oil feedstock.  Oil content is liberated by action on the cellular structure. Heat denatures and segregates proteins, collapsing cell structures and makin...
	Expression
	The screw press is the most widely used method of vegetable oil extraction (Mrema & McNulty, 1985; Singh & Bargale, 2000). The design of a screw press is a balance of objectives that work against one another.  On one hand, compression ruptures cellul...
	Balancing Moisture, Heat, and Compression

	Moisture.  Controlling the moisture content of a feedstock is essential for several reasons.  One reason is for storage and long-term stability of the feedstock. Another is to maximize extraction yields.  Excess water in the feedstock decreases the fr...
	Heat.  As press science has progressed, the ability to control heat has improved.  Heat may be applied to a feedstock before it is pressed, and additional heat is generated by friction in the press.  More recent developments in press design have inclu...
	Heat also affects the structure of the feedstock.  It deteriorates the cell structure, changing the physical and chemical characteristics of the material.  These effects can be orchestrated with moisture content and with duration of time in the press ...

	Compression.  Compression in a screw press is generated by both axial and radial force (Ward, 1976). A continuous screw press can be conceived of in three compression sections: The feed section, the ram section, and the choke section, see Figure 2.2. ...
	The purpose of compression is to reduce the volume of a feedstock in order to force the oil out.  Theoretically, a given feedstock will have a particular compression ratio where all the oil is removed. The peanut, for example, has a theoretical ratio ...
	Figure 2.2. Compression curve and barrel pressure profile
	Note. Figures adapted from “Expression of Oil from Oilseeds - A review”
	by L.M. Khan and M.A. Hanna, 1983. Journal of Agricultural Engineering
	Resources, 28, 495-503.
	Screw-Press Advantages and Disadvantages
	The primary advantages stated by Singh and Bargale (2000) for screw-press popularity are its simplicity and relative safety, making it more attractive than use of solvent extraction equipment. Another big advantage is that it produces end products tha...
	Disadvantages of the screw-press include the difficulty of controlling feedstock characteristics for optimal extraction.  Press set up and clean up can be time consuming and its use only really makes sense when large, continuous runs can be undertaken...

	Press Efficiencies
	Oil expression is contingent on feedstock characteristics and their reaction to the forces in the press. Press efficiency can be as high as 90%, but this usually requires multiple passes through the press (Khan & Hanna, 1983).   Secondary passes can r...
	Press energy efficiency calculations are dependent on expression efficiencies and overall yield.  Press energy efficiency can then be calculated with energy used per volume of oil expressed.  This calculation is an essential part of analyzing biofuel ...

	Biodiesel Production
	Biodiesel is a petro-diesel fuel substitute produced from vegetable oils.  The process of converting raw oil to usable fuel can take several reaction paths to end up with esters.  Esters are formed by combining free fatty acids from triglycerides wit...
	Biodiesel Versus Petroleum Emissions
	Testing and Quantifying Post-Combustion Emissions
	Post-combustion emissions regulations are quantified in terms of mass per distance accumulated for light-duty vehicles and mass per unit of energy produced for commercial vehicles.  Emissions samples are collected from the exhaust line by a constant v...

	CHAPTER 3
	Research Methodology
	Introduction
	The research methodology has been organized into five primary sections. These include a brief contextual overview of the trip to the Democratic Republic of Congo (DRC) in January, 2010, and a rationale for the variety of pulp processing methodologies ...
	Contextual Overview
	Traveling to the DRC
	Because Safou oil is not a readily traded commodity in the countries in which the fruit grows, acquiring oil for testing was complicated.  In May 2009, I was able to get initial samples of fruit pulp from the DRC to conduct preliminary tests regarding...
	My initial goal was to return with only oil, but that was not possible due to several complications.  First, fruit was not readily available in the Kinshasa area because the fruiting season was delayed. This meant fruit was sparse in the local markets...
	Standardizing the fruit pulp process would have been ideal; however, time constraints forced the use of all available means of preparing pulp for export.  This did introduce variables regarding processing, but the methods used were not expected to aff...
	The majority of the fruit pulp was either dried using forced air electric dehydrators or roasted using standard convection ovens.  A smaller sample of wet pulp (14 jars) was pressure canned for later drying.  The dried fruit, weighing approximately 65...
	Data regarding oil yields and raw oil characteristics were collected prior to refining for biodiesel conversion.  Several preliminary conversion methods were used to identify a maximum biodiesel yield and included single-stage base-catalyzed transeste...
	The test fuel was polished in order to produce fuel that would potentially pass ASTM criteria prior to emissions testing.  This polished fuel was then used for fuel characterization and emissions tests.  Emission testing was performed under monitored ...
	Field Data
	Harvesting Data
	Seven trees were harvested; however, tree morphology varied considerably as did the fruits’ readiness to be harvested.  Methods of harvesting were observed and documented, as were the number of people involved, the time required, and the amount of fru...
	Market Data
	This data included price for fruit, quantity collected, and the state and quality of the fruit.  Fruit price varied but is representative of the low supply/high demand period of the Safou season.  The state of the fruit that is considered marketable a...
	Fruit Pulp Processing
	Fruit Samples
	Criteria for inclusion.  Fruit samples were included if they had achieved a level of maturity deemed by local markets as edible.  Three general types or morphologies of fruit were collected, but in all cases ripeness was determined by the predominanc...
	Criteria for spoiled fruit.  Safou fruit is firm when ripe and softens rapidly as it spoils.  Any fruit that was soft and easily deformed was included in the spoiled sample.  Such fruits were culled each day from the unspoiled fruit and processed sepa...
	Decorticating the Fruit
	Ripe and near-ripe fruit.  Ripe and near-ripe fruit is firm. The fruit was split in two halves using a knife. The seed cluster was then removed with a spoon.  This left the fruit skin and the membrane of the seed cluster still attached to the pulp.  ...
	Spoiled fruit.  Spoiled fruit pulp is soft and mushy and separates easily from the seed cluster. This separating was done manually.  These pulp samples did not include the outer membrane of the seed cluster and had less of the fruit’s outer skin.  Th...
	Fruit Drying
	Fresh and spoiled pulp that had been removed from fruit was placed in various forced air food dehydrators for 6-12 hours until the fruit pulp had lost a minimum of 60% of its original weight.  The pulp was dried until it would snap when attempting to ...
	Oven drying.
	Non-canned pulp. The oven drying used on fresh and spoiled pulp was more akin to roasting and was only used on the pulp that had not been canned.  Fruit pulp was weighed prior to being placed in the oven and then was removed when it had been reduced t...
	Canned pulp.  Canned pulp was oven dried once it arrived in the United States.  Because there was no time constraint, oven temperature was set to 210  F.  The tray was weighed and recorded every half hour.  At the point when there was less than a gram...
	Canning
	All pressure canning was done with glass jars with sealable lids.  The jars were canned at 15 psi, raising the temperature to approximately 250  F.  Once the pressure cooker was at pressure it was kept on heat for 30 minutes, after which the pressure ...
	Before initial placement in the canning jars, fruit processed via this preparation method were subject to one of four pretreatments.  The methods described here were done to identify feasibility and simply to get as much undried fruit pulp ready for e...
	Pretreatment one.
	Whole fruit: fresh. Approximately 400 ml of whole fruits were placed in canning jars with 200 ml of water.  Samples were then canned.
	Pretreatment two.
	Whole fruit: wilted. Whole fruits were placed in an oven at 200  F for approximately 45 minutes to wilt.  These whole fruits were then placed in canning jars with no water.  Samples were then canned.
	Pretreatment three.
	Fruit pulp: blanched. Whole fruits where blanched in boiling water for 5 minutes.  The pulp was then scraped from the seed cluster by hand and packed in canning jars.  Samples were then canned.
	Pretreatment four.
	Fruit pulp: spoiled. Spoiled fruit pulp was scraped from the seed cluster and packed in jars.  Samples were then canned.
	Establishing Zero Moisture Content
	In order to establish a zero moisture content, samples that had been dried in the food dehydrators in the DRC where then placed in a muffle furnace for a minimum of 24 hours at 212  F (100 C).
	Safou Pressing and Oil Refining
	Pre-press Pulp Conditioning
	Dried fruit pulp was crumbled using a Kitchenaid® flourmill.  The grinder was set with a ¼ inch gap to crumble the dried pulp.  This pretreatment was done to help the flow of dried fruit through the hopper and into the press.  If pulp was not dry enou...
	Oil Pressing
	The press.  Pressing was done using a Taby 20 bench-top extrusion screw-press made in Sweden. The Taby model expresses oil at its mid-point and extrudes meal pellets at the end opposite the hopper. This press has a heating collar that goes around the ...
	Preparing the press.  The press was cleaned using mild soap and water and was allowed to thoroughly dry before pressing. Once assembled, the press was allowed to heat thoroughly with the heating collar before pulp was introduced into the press.
	Heat and moisture control.  The heating collar was regulated by a thermostat attached to the housing to maintain temperatures between 100-150  C.  When pulp was excessively dry and threatened to bind up the press, moisture was introduced to the feedst...
	Labeling
	Labeling on samples included the original quantity of fresh pulp, how it was processed, as well as its final dry weight.  Glass vessels in which the oil was collected were labeled with the vessel’s dry weight (including the label), how it was previous...
	Oil and Press-meal Capture
	The oil was captured in glass vessels.  These vessels were thoroughly cleaned with soap and water and then rinsed with pure acetone. The press-meal was collected into a glass bowl and then transferred to the jar or bag in which it had been imported.
	Oil Yield Calculations
	Oil yield was determined by weight.  Complete calculations required corrections for pressing losses, moisture content, and foots (sediment).
	Press losses.  In the course of pressing a feedstock, a certain quantity of the feedstock does not progress through the press, as well as oil that remains on the press.  Material loss was calculated by subtracting the dirty press weight from the clean...
	Single sample.  All parts for the press assembly were cleaned and weighed to establish a pre-press weight.  Sample material that failed to progress through the press was determined by placing the entire press housing on a scale and subtracting the pre...
	Multiple sample runs.  When multiple samples were run in sequence, a starter sample was used to fill the press housing and excluded from any yield data.  Subsequent samples were introduced once the press had run for two minutes, beginning when meal ce...
	Moisture content.  During the course of pressing moisture content is lost due to evaporation and must be accounted for in yield calculations.  The sum of the raw oil expressed and the press-cake will not equal the original feedstock sample weight.  So...
	Foots/Settling.  Non-oil material was accounted for using a 100 ml graduated cylinder.  The raw oil vessels were place in an oven at 175º F for one hour.  The oil catchment vessel was then shaken for 1 minute in order to re-suspend sediment.  This su...
	Oil Purifying
	After being captured in the glass vessels, the oil was placed in the oven for a minimum of four hours at 175  F.  This helped to settle particulate matter (foots) and further dry the oil. After the oil had been settled the oil was poured out into seco...
	Several methods of filtering the oil were used. The oil was first filtered through a metal coffee filter, but this still allowed small particulates through.  Coffee filter paper was then used, which did an excellent job of purifying the oil but was sl...
	A centrifuge proved to be the most effective method for removing particulates. The oil was heated to 175  F before being run through the centrifuge.  The centrifuge was a bowl design unit built by Simple Centrifuge and constructed of 6061-T6 aluminum ...
	Biodiesel Reactions and Fuel Polishing
	Titration
	Oil was titrated to determine how much free fatty acids were in the feedstock and how much catalyst would be needed for base-catalyzed reactions in order to complete the biodiesel reactions.  The titer used was a solution prepared by placing a gram of...
	Biodiesel Reactions
	Several reactions were bench top tested for the production of biodiesel.  These included two NaOH base-catalyzed reactions as well as a two-stage acid then base reaction. The reactions are summarized below. The oil feedstock, and not necessarily the ...
	After several bench top tests, the two-stage test was chosen for fuel production because optimal yield appeared to be around 85% to 90%, indicating a near complete reaction.  However, up-scaling the smaller bench top reaction proved to be less success...
	Reaction one: NaOH base.
	Reactants.  These tests were done with 10 grams of raw centrifuged Safou oil.  Transesterification was done using NaOH and methanol.  The molar ratio of methanol to oil was 6:1. NaOH catalyst was 5% by weight of methanol.
	Reaction vessel.  Ingredients were placed in a three-necked round bottom flask.  A glass stirring apparatus was placed in the central neck.  A cork was placed on another neck while the last neck received a distillation column, virtually closing the sy...
	Time and temperature.  The batch was heated to 50  C for one hour.
	Washing.  The reaction solution was rinsed out of the reaction vessel into a 125 ml separatory funnel using 30 ml of ethyl acetate, and then poured into a 125 ml separatory funnel.  30 ml of de-ionized water was placed in the separatory funnel with th...
	Post-wash purifying.  Washed biodiesel/ethyl acetate solution was dried with the addition of magnesium sulfate (MgSO4).  The dried solution was then filtered through filter paper to remove the magnesium sulfate.  The final step was to evaporate the et...
	Reaction two: NaOH base.
	Reactants.  These tests were done with 150 ml of gravity-settled Safou oil.  The transesterification was done with 5.5 ml of sodium methylate and 37.5 ml of methanol.  This is equivalent to a 6:1 molar ratio of methanol to oil and NaOH catalyst of 5%...
	Reaction vessel.  Ingredients were placed in a 500 ml Erlenmeyer flask and placed on a hot plate with a magnetic stir bar.  A plastic funnel was placed in the neck of the Erlenmeyer flask to reduce methanol escape.  A glass thermometer was inserted to...
	Time and temperature.  The batch was heated to 50  C for one hour and the glycerin was allowed to settle out for 8 hours.
	Washing.  After settling, the biodiesel fraction was decanted out into a 500 ml separatory funnel.  400 ml of tap water was placed in the separatory funnel with the reaction solution and agitated three times, relieving any pressure build-up between ag...
	Post-wash purifying.  Washed biodiesel was then de-methylated and dried by placing it in a 250ml beaker and raising the temperature to 100 C for 10 minutes while being stirred.
	Reaction three: two-stage acid-base reaction.  Reaction three was a two-stage reaction. The first stage, an acid-catalyzed esterification reaction, was followed by a second stage base-catalyzed transesterification reaction.
	Stage 1: reactants.  150 ml of centrifuged and filtered oil was mixed with 8% by volume of methanol.  Sulfuric acid (98% pure H2SO4) was added at a ratio of 1ml per liter of oil.
	Stage 1: reaction vessel.  The reactants were placed in a 500 ml Erlenmeyer flask.  A funnel was placed in the neck of the flask to reduce any methanol escape and a thermometer was inserted to monitor temperature.  The flask was then placed on a hot p...
	Stage 1: time and temperature.  The solution was then held at 36  C for one hour while being stirred.  The solution was then stirred for another hour and the temperature allowed to decrease to room temperature. The acid reacted vessel was then allowed...
	Stage 2: reactants.  Methanol and 30% concentrate sodium methylate were added to the reaction vessel.  The total methanol in the reaction, including the fraction in the sodium methylate, totaled 14%.  The total percentage by volume of stage-one and st...
	Stage 2: reaction vessel.  The reaction vessel remained the same as in stage one.
	Stage 2: time and temperature.  The solution was then reacted for 1 hour at 50  F while being constantly stirred.  It was then allowed to settle for eight hours.
	Washing.  After settling, the biodiesel fraction was decanted into a 500 ml separatory funnel.  400 ml of tap water was place in the separatory funnel with the reaction solution and agitated three times, relieving any pressure build-up between agitati...
	Drying and de-methylating.  The fuel was stirred while the temperature was raised to 60º C and maintained for 10 minutes after boiling ceased.
	Test fuel reaction methodology.  Test fuel was produced following the third reaction, using the two-stage reaction.  The raw Safou oil was titrated and determined to have a considerably high free fatty acid (FFA) concentration.  Rather than neutralize...
	Stage 1: reactants.  986 ml methanol (8% by volume) was added to 12.33 L of raw centrifuged and filtered Safou oil.  While the methanol and oil were being stirred, 12 ml of sulfuric acid (98% pure H2SO4) was added.
	Stage 1: reaction vessel.  The reactants were placed in a five-gallon bucket made of HDPE.  A mixing rod was threaded through the bucket lid to a corded drill.  The drill was fixed in place by a vise and a variable voltage dial was used to control the...
	Stage 1: time and temperature.  The reactants were mixed for 1 hour while being held at 36  C using a thermometer and bucket heater.  After the first hour the bucket heater was removed and the reactants mixed for an additional hour.  The solution was ...
	Stage 2: reactants.  2.08 L of methanol was then mixed with 0.483 ml of sodium methylate in a five-gallon bucket.  This mixture was then added to the stage one reactants, but only after they were moved to a different reaction vessel.  After the additi...
	Stage 2: reaction vessel.  The reactants from the stage one reaction were placed in a 50 gallon HPDE graduated reaction vessel.  The vessel was raised up so that a five-gallon bucket could easily be placed under it.  The corded drill and variable spee...
	Stage 2: time and temperature.  The temperature in the reaction vessel was raised to 55  C and contents were mixed for two hours.  The reactants were then allowed to settle for over 24 hours.
	Washing.  After draining the glycerin fraction the fuel was then washed with a fine mister and the water drained.  Fifteen gallons of water were used for the washing process.
	De-methylating and drying.  Once the water was drained the bucket heater was used to raise the fuel temperature to 60  C for 10 minutes to de-methylate the fuel.  The fuel was then allowed to settle for 24 hours in order to allow available water to pr...
	Fuel polishing.
	Purolite.  The mostly dry and de-methylated fuel was then run four times through a column of Purolite ion exchange resin.  Water content was still at 2400 ppm when the maximum water content can be 2400 ppm.
	Magnesol.  After several tests showed that the fuel was still not ASTM certifiable after the Purolite treatment, a 3% by weight quantity of Magnesol (magnesium silicate) was added to the biodiesel.  The fuel and Magnasol was agitated for 10 minutes a...
	Filtering.  After settling, fuel was vacuum filtered.  A filter with a rubber gasket was placed in the throat of an Erlenmeyer flask, which also had a nipple on the collar to pull a vacuum.  Line was then run from the Erlenmeyer flask to a ten-gallon...
	Test Fuel Storage.  After filtration, fuel was stored in a standard red two-gallon plastic gas can.
	Oil And Fuel Characterization
	Energy Content
	Calorimetry tests were conducted using a Parr oxygen bomb calorimeter.  Temperature change data was collected using native software.  Standard procedures outlined in the Parr instruction manual were followed.  The heat of combustion was calculated fr...
	Fuel Characterization Tests
	Hydrogen nuclear mass resonance.  Oil and fuel composition was determined using HNMR.  Samples were placed in HNMR test tubes and suspended in deuterium chloroform (CDCl3).  This test exposes molecules to a magnetic field and bombards the sample with ...
	Gas chromatography / mass spectrometry (GC/MS).  Fuel samples were placed in the GC/MS device.  This test was able to identify the primary chemical compounds in the fuel with a high degree of accuracy. The methodology for the biodiesel test conducted ...
	Lubricity.  Samples were placed in an ASTM certified high frequency reciprocating rig (HFRR).  A small polished metal disc (lower sample) was fixed in place of a small receptacle.  When calibrating, the receptacle was filled with  standard kerosene an...
	Cloud and pour points.  The cloud point of a fuel is determined by exposing a sample of fuel to gradually lower temperatures.  Fuel is warmed or heated to the point where it is fluid and clear.  The sample or samples are then gradually exposed to lowe...
	Sandy Brae water test.  The Sandy Brae water test is accurate down to 50 ppm  ±20 ppm.  This test measures pressure produced in a sealed container when water in a sample reacts with calcium hydride to produce gas.  The fuel sample and the calcium were...
	Data Analysis Procedures
	CHAPTER 4
	Research FINDINGS and REsults
	Introduction
	The research findings are organized into three main sections: Fruit and Oil data,  Fuel Characteristics data, and Emissions data.  The Fruit and Oil section addresses all of the steps required from harvesting of the fruit through drying and pressing f...
	Fruit and Oil
	This section includes the data collected during my visit to the DRC in January 2010 for the purpose of harvesting Safou.  As is pointed out in the limitations of the study section this data set is small, so a generalized conclusion cannot be derived ...
	Harvesting
	Safou fruit was harvested from nine trees with varying physical characteristics.  Fruit was harvested on the grounds of  the Centre Évangélique de Coopération (CECO) campus in Kimpese.  Students at the CECO school were asked to participate in the har...
	Fruit sample inclusion criteria.
	Ripe fruit.  Fruit was considered usable for our sample if it was considered ripe enough to eat.  Within this “ripe enough to eat” category the fruit was sorted into near-ripe and ripe fruit based on the extent of purple pigment evident on the fruit....
	Spoiled fruit.  Fruit was collected in Kimpese, placed in used onion bags, and transported by car to the campus of The American School of Kinshasa (TASOK) for processing.  After transport to TASOK, at the beginning and end of each day spoiled fruit wa...
	Fruit characteristics.  A sample of 27 fruits were cut in half, the seeds removed, and the seed cluster membrane separated from the pulp.  The three parts were then weighed using a triple-beam balance with accuracy to the tenth of a gram. The results ...
	Fruit Drying
	Dehydrators.  Fruit was dried in preparation for pressing.  Initial drying was done with dehydrators to establish a target end point based on a percentage of the fruit’s starting weight.  Dehydrator trays were weighed on a balance accurate to a tenth...
	/
	Figure 4.1. Percent weight loss for four Oster dehydrator trays being rotated from bottom to top after each weighing.
	/
	Figure 4.2. Average of trays from Figure 4.1 with a trend line used to help describe the progression of moisture removal.
	Oven drying.  Chopped fruit pulp was placed in baking tins and placed in conventional kitchen ovens. Temperatures were set at 250  F and the oven doors propped open with the handle of a wooden spoon to allow hot moist air to escape and cool air in. Ov...
	Energy for drying.  Three dehydrators were used for the dehydrating process.  These included an Oster®, a Magic Chef®, and an Onesco®.  Each dehydrator varied in terms of power, number of trays, and updraft or downdraft capabilities. Table 4.2 shows p...
	The listed power and time required to reach terminal drying weight was used to calculate energy required per gram of fruit dried.  Data from the Oster®, Magic Chef®, and Onesco® dehydrators were collected.  Watt hours per kilogram dry pulp (Wh/kgdry) ...
	Processing Effects on Fatty Acid Content
	Dehydrator and oven-dried pulp.  Dehydrator temperature ranged between 130-155  F, depending on the model and settings.  Temperatures for conventional ovens ranged from 250-300  F.  Titrations of the oil showed that oil that had been extracted from d...
	Pressure-canned pulp.  Wet pulp and fruit were pressure-canned at 250  F and later dried in the United States in a conventional oven set to 210  F with the oven door cracked.  Oil extracted from this pulp also titrated below 1gKOH/liter.
	Pulp Pressing
	The press.  The press used for oil expression was a Taby 20® with a maximum power rating of 600 watts.  Due to varying speed and an unrated heating collar set to maintain a temperature range, a Watts-up? Pro® meter was used to collect energy data duri...
	Press and heated-collar loads.  Figure 4.4 shows the press load including time prior to pulp being pressed as well as cool-down time. The square segments found before and after the pressing represent the load from the heated collar.  This load also ex...
	/
	Figure 4.4 Screw-press load profile during the extraction of 8.245 kg of dried pulp.
	Pressing yields for raw oil.  Raw oil press yield was calculated by dividing raw oil weight by the initial dry pulp weight.  After settling, neat oil was decanted and proved to be 88% of initial raw oil values.  Results for pressing and settling yield...
	Oil settling.  In order to get a number for neat oil extracted, raw oil samples were heated to 175  F and allowed to settle for more than eight hours.  They were then agitated for a minute to suspend all precipitates and a sample poured into a 100 ml ...
	Process heat and acid values.  Five oil samples were titrated over the course of this research.   The samples shown in Table 4.4 are organized by titration values in the far right column.  The test fuel was a mixture of all oil samples and was heated ...
	/
	Figure 4.5 Cumulative energy for the pressing of 8.245kg of dried pulp.
	Energy Densities
	The energy density of Safou FAME, Safou oil, press-cake, and seed were determined using an oxygen bomb calorimeter.  Standard procedures for calibration and corrections for iron combustion and acid production were performed per the instructions of th...
	Energy Calculation for Safou Oil Production
	Energy needed for oil production was calculated by summing the total energy required for drying and pressing. The overview of the calculation used for pressing energy per kilogram of neat oil is shown below in Figure 4.5.  The average raw oil percen...
	Fuel Characteristics of Safou
	Safou Biodiesel Characteristics
	Several biodiesel transesterification reactions were done in an effort to produce fatty acid methyl esters (FAME) from Safou oil.  Lab-scale reactions produced yields greater than 80%, whereas larger-scale reactions—in particular the two-stage acid-b...
	Safou Oil Feedstock Composition
	High yield reactions were used to determine molar ratios of the raw oil.  Composition was determined after successful conversion to FAME with a GC/MS.  Several compositions of Safou oil have been reported from previous literature (see Table 2.2).  Ta...
	Safou Fuel Analysis
	Safou oil and fuel characterization is summarized in Table 4.7.  The table does not represent the entire battery of tests required for ASTM 6751-09 certification (see Table 2.7 for a complete list of tests required for ASTM certification).  Analysis ...
	.
	Press-cake.  Embodied energy content of press-cake was determined to be greater than 15 kJ/g.  As in the case of seeds, the energy content of this material could be applied for process energy. However, the potential for press-cake to be used as a foo...
	Press energy example.  If a press was run with Safou biodiesel, how much oil could be produced?  Assuming a conservative estimate that the press energy demand was 100 Wh/kg of oil produced, one liter of Safou biodiesel could produce 14.66 kg of Safou ...
	(1)
	1,𝐿-𝐹𝑢𝑒𝑙. =,0.86 -𝑆𝑝.  𝐺𝑟𝑎𝑣..× ,1000𝑔-,𝐿-,𝐻-2.𝑂..×,20.632𝑘𝐽-,𝑔-𝐹𝑢𝑒𝑙..=,17,744𝑘𝐽-,𝐿-𝐹𝑢𝑒𝑙..
	(2)
	,𝐹𝑢𝑒𝑙 𝐸𝑓𝑓.-𝑃𝑟𝑒𝑠𝑠. =,17,744𝑘𝐽-,𝐿-𝐹𝑢𝑒𝑙..×,35%-𝑒𝑛𝑔.  𝑒𝑓𝑓..×,85%-𝑚𝑒𝑐ℎ.  𝑒𝑓𝑓..  =,5279𝑘𝐽-,𝐿-𝐹𝑢𝑒𝑙..
	(3)
	𝑈𝑠𝑒𝑓𝑢𝑙 𝐸𝑛𝑒𝑟𝑔𝑦/𝐿=,5279𝑘𝐽-𝐿 ×. ,1𝑊ℎ-3.6𝑘𝐽. =,1466𝑊ℎ-,𝐿-𝐹𝑢𝑒𝑙..
	(4)
	1,466𝑊ℎ/,𝐿-𝐹𝑢𝑒𝑙. ÷,100𝑊ℎ-,𝑘𝑔-𝑂𝑖𝑙..=,14.66,𝑘𝑔-𝑂𝑖𝑙.-,𝐿-𝐹𝑢𝑒𝑙. .
	,𝑔-𝑚𝑖.=,𝑘𝑔-ℎ.∙,1000𝑔/𝑘𝑔-3600𝑠𝑒𝑐/ℎ.∙,ℎ-𝑚𝑖𝑙𝑒𝑠.
	Comparison of THC between fuels. Total hydrocarbons are indicative of incomplete combustion both in the cylinder and in the catalytic converter.  During increased engine load the engine is injecting more fuel than can be completely combusted.  As RPM ...
	/
	Figure 5.9.  CO g/mi emissions for Safou, soy, and petro over 0-80% engine loads.
	It is curious that the 40-60% engine load area shows petroleum increasing in THC values in comparison to Safou, while the CO comparison shows petro with the least production of CO.  This points to the fact that the catalytic converter is designed to...
	Comparison of NO between fuels.  NO production for all three fuels appears to be very similar up to 25% engine load, at which point emissions data begin to stratify with the greatest variation in readings for soy.  Safou appears to compare closely ...
	/
	Figure 5.10.  NO g/mi emissions for Safou, soy and petro over 0-80% engine loads.
	Comparison of NO2 between fuels. Generally, NO2 production for the three test fuels is similar.  The trend for petroleum appears to gravitate towards the lower values, with increased separation of the data points as engine load increases. There is a ...
	/
	Figure 5.11.  NO2 g/mi emissions for Safou, soy and petro over 0-80% engine loads.
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